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Periodic spatial sampling in one
dimension

> Array:
» Consists of individual sensors that sample the environme
spatially
» Each sensor could be an aperture or omni-directional
transducer
» Spatial sampling introduces some complications
(Nyquist sampling, folding, ...)
» Question to be asked/answered:
When can f(x, fp) be reconstructed by {ym(t,)}?

» f(x, t) is the continuous signal and
» {ym(t)} is a sequence of temporal signals where
ym(t) = f(md, t), d being the spatial sampling interval.
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o
Periodic spatial sampling in one
dimension ...

» Sampling theorem (Nyquist):
If a continuous-variable signal is band-limited to
frequencies below kg, then it can be periodically sampled
without loss of information so long as the sampling perioa
d<7/ky=No/2.
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Figure 3.13  The periodic spectrum S() is equal to the sum of periodic replications of the
spectrum S, (k). In this case the periodic replications do not overlap because S, (k) is bandlimited
to a frequency ko < m/d. When the spectrum S, (k) is not bandlimited to frequencies below 7/d,
one period of the periodic spectrum S(k) does not equal S, (k). This phenomenon is called aliasing.
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Periodic spatial sampling il‘ié
dimension ... Regular arrays

» Assume point sources (Wiot = Warray - Wey)).
» Easy to analyze and fast algorithms available (FFT).

» Periodic sampling
of
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signals can be cesses .. e
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Figure 3.17 Two arrays of discrete sensors are shown. On the left, rectangular array has
not necessary for perodically spaced sencors. The VLA shown o the sight has powerlaw space senss along
multidimensional

S|g n al S. Figure 3.16  Several differently shaped baseband regions 3, when periodically extended in a
manner consistent with Cartesian sampling, completely cover the two-dimensional frequency plane. | 955
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Regular arrays; linear array
Grating lobes

» Consider linear array; M equally spaced ideal sensor with
inter-element spacing d along the x direction.

» The discrete aperture function, wy,. » Given an linear array of M sensors with element spacing d.

» The discrete aperture smoothing function, W(k):

W(k) _ sin kMd /2

W(k) =3, wme’kmd A sinkd/2 -
, . , , » Mainlobe given by D = Md.
» Spatial aliasing given by d relative to . » Gratinglobes (if any) given by d.
» Maximal response for ¢ = 0. Does it exist other ¢4 with the
same maximal response?
ke =25 singg + 250 = singg = £3n.
» n=1: No gratinglobes for A\/d > 1,i.e. d < A.

Amplitude

> d =14\
Singg+£n-1/4 = ¢y = +14.5°, +30°, +48.6°, +90°.

Figure 320 The aperture smoothing function magnitude |W (k)| for uniform shading is plotted
for a nine-sensor regular linear array. This spatial spectrum has period k = 2/d. The visible
region of the aperture smoothing function is that part for which —27/A° < k2 < 2m/3’. What
might be called secondary mainlobes—those not located at the origin—arc termed grating lobes.
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Element response
If the elements have finite size:

We(K) = / w(K)eK*dx

—0o0

» If linear array:
Continuous aperture “devided into” M parts of size d
Each single element: *"/2) — first zero at k = 2r/d
» Total response:
Vvtotal(k) - We( ) Wa(k)
where Wj(k) is the array response when point sources ar
assumed.
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Array Co-Array
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Figure 3.22  The Haubrich array shown on the left has the co-array on the right. Because there
are no redundant baselines in the array, the co-array values are all equal to one except at the origin
(zero lag), where the co-array value is M.
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Irregular arrays

» Discrete co-array function:

> (X)) = X (my,ma)eo(z) Wim Win,» Where 19(;2) denotes the set
of indices (my, my) for WhICh Xmy, — Xm, = X-

» 0<c(¥) <M= c(0).

» Equals the inverse Fourier Transform of |W(k)|?
= sample spacing in the lag-domain must be small enoug
to avoid aliasing in the spatial power spectrum.

» Redundant lag: The number of distinct baselines of a give
length is grater than one.
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Examples ...

Aray Co-Array
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« o e « e @ e o Figure 325 The panels depict the Fouricr Transforms of the co-arrays for the circular arays
depicted in Fig. 3.23. The computations for the cight-sensor amay are shown on the lefl, the
nine-sensor on the right. The spectra are plotted only over the firs quadrant of wavenumber space. |
¢« o e ¢« o 0 o o Peak height can be judged by the number of contours encircling the peak. |
« o e « e e o o
Square (M=9)
. e .
Figure 323 The sensor locations for two circular armays and a square array are shown in the lef
column. The first of the circular arrays contains eight sensors; the square array and the remaining
circular armay each contain nine sensors. Their corresponding co-arays arc shown in the right
column. The area of the circles denoting co-array locations is proportional to the redundancy at
that lag. The redundancy at the origin of a co-array always cquals M. Note how these regular
array geometries lead to co-arrays spanning complicated spatial regions.
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» Non-redundant arrays == Minimum hole arrays == Golumb
Irregular arrays arrays 1101, 1100101, 110010000101
» Redundant arrays == Minimum redundancy arrays

» Sparse arrays 1101, 1100101, 1100100101

» Underlying regular grid, all position not filled. A
» Position fills to acquire a given co-array Aay ? o, Co-Array
. . M=6 I
» Non-redundant arrays with minimum number of gaps I ) o
» Maximal length redundant arrays with no gaps. e \ -
» Sparse array optimization s I3
. = T ©
> Irregular arrays can give regular co-arrays ... 1 © oo
o ———0—0—0 > + +— -
A
Mes °
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Figure 3.27 A six-sensor, filled array and its co-array are shown. Two arrays having the same
aperture are derived by successively removing sensors from the array. This thinning procedure
results in the depicted co-arrays. To derive the four-sensor perfect array, one must start with a
seven-sensor filled array.
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Random arrays

> W(K) = M1 k% (assumes unity weights)
> E[W(K)] = S5 E[e5] = M [ py(¥m)e?*ndX =

i.e. Equals the array pattern of a continuous aperture
where the probability density function plays the same role
as the weighting function.
> var[W(k)] = E[|W(k)[?] - (EIW(k)])?
> E[W(R)?] = E[S o & - S e %)
- E[M 1 + Zm1 my#my eij"H Z € Jk XmZ]
Assumes uncorrelated x,, (E[x - y] E[x]- Ely])
= E[[W(K)[P] = M+ (M? — M)|x(K)[?
= var[W(k)] = M — M|®y(K)|2
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