

UNIVERSITY

23

INF5410 Array signal processing. Ch. 3: Apertures and Arrays, part II

Andreas Austeng

Department of Informatics, University of Oslo

February 2010

Ifi/UiO AA, INF5410 Apertures & Arrays, part II February 2010

Periodic spatial sampling in one dimension

- Array:
 - Consists of individual sensors that sample the environment spatially
 - Each sensor could be an aperture or omni-directional transducer
 - Spatial sampling introduces some complications (Nyquist sampling, folding, ...)
- Question to be asked/answered: When can f(x, t₀) be reconstructed by {y_m(t_o)}?
 - f(x, t) is the continuous signal and
 - {y_m(t)} is a sequence of temporal signals where
 y_m(t) = f(md, t), d being the spatial sampling interval.

Outline

Finite Continuous Apetrures

Spatial sampling Sampling in one dimension

Arrays of discrete sensors

Regular arrays Grating lobes Element response Irregular arrays

Ifi/UiO AA, INF5410 Apertures & Arrays, part II February 2010

Periodic spatial sampling in one dimension ...

Sampling theorem (Nyquist):

If a continuous-variable signal is band-limited to frequencies below k_0 , then it can be periodically sampled without loss of information so long as the sampling period $d \le \pi/k_0 = \lambda_0/2$.

UNIVERSITY OF OSLO

Figure 3.13 The periodic spectrum S(k) is equal to the sum of periodic replications of the spectrum $S_i(k)$. In this case the periodic replications do not overlap because $S_i(k)$ is bandimited to a frequency $k \leq \pi/d$. When the spectrum $S_i(k)$ is not bandimited to frequencies below π/d , one period of the periodic spectrum S(k) does not equal $S_i(k)$. This phenomenon is called *aliasing*.

Periodic spatial sampling in One of the dimension ...

- Periodic sampling of one-dimensional signals can be straightforwardly extended to multidimensional signals.
- "Rectangular / regular" sampling not necessary for multidimensional signals.

<image><image>

Regular arrays; linear array

- Consider linear array; *M* equally spaced ideal sensor with inter-element spacing *d* along the *x* direction.
 - The discrete aperture function, w_m .
 - The discrete aperture smoothing function, W(k):

$$W(k) \equiv \sum_{m} w_{m} e^{jkm}$$

• Spatial aliasing given by *d* relative to λ .

• Assume point sources $(W_{tot} = W_{arrav} \cdot W_{el}))$.

Regular arrays

UNIVERSITY

OF OSLO

Element response

If the elements have finite size:

$$W_e(\vec{k}) = \int_{-\infty}^{\infty} w(\vec{k}) e^{j\vec{k}\cdot\vec{x}} d\vec{x}$$

UNIVERSITY

30

OF OSLO

- If linear array: Continuous aperture "devided into" *M* parts of size *d* Each single element: sin(kd/2)/k/2 → first zero at k = 2π/d
- ► Total response:
 - $W_{\text{total}}(\vec{k}) = W_e(\vec{k}) \cdot W_a(\vec{k}),$

where $W_a(\vec{k})$ is the array response when point sources are assumed.

Ifi/UiO AA, INF5410 Apertures & Arrays, part II February 2010

Irregular arrays

- Discrete co-array function:
 - $c(\vec{\chi}) = \sum_{(m_1, m_2) \in \vartheta(\vec{\chi})} w_{m_1} w_{m_2}^*$, where $\vartheta(\vec{\chi})$ denotes the set of indices (m_1, m_2) for which $\vec{x}_{m_2} \vec{x}_{m_1} = \vec{\chi}$.
 - ► $0 \leq c(\vec{\chi}) \leq M = c(\vec{0}).$
 - Equals the inverse Fourier Transform of |W(k)|²
 ⇒ sample spacing in the lag-domain must be small enough to avoid aliasing in the spatial power spectrum.
 - Redundant lag: The number of distinct baselines of a given length is grater than one.

Ifi/UiO AA, INF5410 Apertures & Arrays, part II February 2010

Examples ...

25 The sensor locations for two circular arrays and a square array at shown in the entit first soft the circular arrays command right sensors, the square array and the trentaining may each contain time sensors. Their corresponding co-arrays are shown in the right first end the circular discovery and the state of the state of the state of the metrics lead to co-arrays spanning complicated spatial regions.

UNIVERSITY

OF OSLO

Irregular arrays

- Sparse arrays
 - ► Underlying regular grid, all position not filled.
 - Position fills to acquire a given co-array
 - Non-redundant arrays with minimum number of gaps

UNIVERSITY OF OSLO

34

UNIVERSITY OF OSLO

- Maximal length redundant arrays with no gaps.
- Sparse array optimization
 - Irregular arrays can give regular co-arrays ...

Ifi/UIO AA, INF5410 Apertures & Arrays, part II February 2010

Random arrays

- $W(\vec{k}) = \sum_{m=0}^{M-1} e^{j\vec{k}\cdot\vec{x}_m}$ (assumes unity weights)
- $E[W(\vec{k})] = \sum_{m=0}^{M-1} E[e^{j\vec{k}\cdot\vec{x}_m}] = M \int p_x(\vec{x}_m) e^{j\vec{k}\cdot\vec{x}_m} d\vec{x} = M \cdot \Phi_x(\vec{k})$

i.e. Equals the array pattern of a continuous aperture where the probability density function plays the same role as the weighting function.

• $var[W(\vec{k})] = E[|W(\vec{k})|^2] - (E[W(\vec{k})])^2$

►
$$E[|W(\vec{k})|^2] = E[\sum_{m_1=0}^{M-1} e^{j\vec{k}\cdot\vec{x}_{m_1}} \cdot \sum_{m_2=0}^{M-1} e^{-j\vec{k}\cdot\vec{x}_{m_2}}]$$

 $= E[M \cdot 1 + \sum_{m_1,m_1 \neq m_2} e^{j\vec{k}\cdot\vec{x}_{m_1}} \cdot \sum_{m_2} e^{-j\vec{k}\cdot\vec{x}_{m_2}}]$
Assumes uncorrelated $x_m (E[x \cdot y] = E[x] \cdot E[y])$
 $\Rightarrow E[|W(\vec{k})|^2] = M + (M^2 - M)|\Phi_x(\vec{k})|^2$
 $\Rightarrow var[W(\vec{k})] = M - M|\Phi_x(\vec{k})|^2$

Examples

Non-redundant arrays == Minimum hole arrays == Golumb arrays 1101, 1100101, 110010000101

UNIVERSITY OF OSLO

Redundant arrays == Minimum redundancy arrays 1101, 1100101, 1100100101

Ifi/UiO AA, INF5410 Apertures & Arrays, part II February 2010