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Periodic spatial sampling in one
dimension

I Array:
I Consists of individual sensors that sample the environment

spatially
I Each sensor could be an aperture or omni-directional

transducer
I Spatial sampling introduces some complications

(Nyquist sampling, folding, . . .)
I Question to be asked/answered:

When can f (x , t0) be reconstructed by {ym(to)}?
I f (x , t) is the continuous signal and
I {ym(t)} is a sequence of temporal signals where

ym(t) = f (md , t), d being the spatial sampling interval.
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Periodic spatial sampling in one
dimension ...

I Sampling theorem (Nyquist):
If a continuous-variable signal is band-limited to
frequencies below k0, then it can be periodically sampled
without loss of information so long as the sampling period
d ≤ π/k0 = λ0/2.
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Periodic spatial sampling in one
dimension ...

I Periodic sampling
of
one-dimensional
signals can be
straightforwardly
extended to
multidimensional
signals.

I “Rectangular /
regular” sampling
not necessary for
multidimensional
signals.
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Regular arrays

I Assume point sources (Wtot = Warray ·Wel)).
I Easy to analyze and fast algorithms available (FFT).
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Regular arrays; linear array

I Consider linear array; M equally spaced ideal sensor with
inter-element spacing d along the x direction.

I The discrete aperture function, wm.
I The discrete aperture smoothing function, W (k):

W (k) ≡
∑

m wmekmd

I Spatial aliasing given by d relative to λ.
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Grating lobes

I Given an linear array of M sensors with element spacing d .

I W (k) = sin kMd/2
sin kd/2 .

I Mainlobe given by D = Md .
I Gratinglobes (if any) given by d .
I Maximal response for φ = 0. Does it exist other φg with the

same maximal response?
kx = 2πλ sinφg ± 2πd n⇒ sinφg = ±λd n.

I n = 1: No gratinglobes for λ/d > 1, i.e. d < λ.
I d = 4λ:

sinφg ± n · 1/4⇒ φg = ±14.5◦,±30◦,±48.6◦,±90◦.



Ifi/UiO AA, INF5410 Apertures & Arrays, part II February 2010

30

Element response

I If the elements have finite size:

We(~k) =

∫ ∞
−∞

w(~k)e~k ·~xd~x

I If linear array:
Continuous aperture “devided into” M parts of size d
Each single element: sin(kd/2)

k/2 → first zero at k = 2π/d
I Total response:

Wtotal(
~k) = We(~k) ·Wa(~k),

where Wa(~k) is the array response when point sources are
assumed.
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Irregular arrays

I Discrete co-array function:
I c(~χ) =

∑
(m1,m2)∈ϑ(~χ) wm1w

∗
m2

, where ϑ(~χ) denotes the set
of indices (m1,m2) for which ~xm2 − ~xm1 = ~χ.

I 0 ≤ c(~χ) ≤ M = c(~0).
I Equals the inverse Fourier Transform of |W (~k)|2
⇒ sample spacing in the lag-domain must be small enough
to avoid aliasing in the spatial power spectrum.

I Redundant lag: The number of distinct baselines of a given
length is grater than one.
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Examples
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Examples ...
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Irregular arrays

I Sparse arrays
I Underlying regular grid, all position not filled.
I Position fills to acquire a given co-array

I Non-redundant arrays with minimum number of gaps
I Maximal length redundant arrays with no gaps.

I Sparse array optimization
I Irregular arrays can give regular co-arrays ...
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Examples

I Non-redundant arrays == Minimum hole arrays == Golumb
arrays 1101, 1100101, 110010000101

I Redundant arrays == Minimum redundancy arrays
1101, 1100101, 1100100101
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Random arrays

I W (~k) =
∑M−1

m=0 e~k ·~xm (assumes unity weights)

I E [W (~k)] =
∑M−1

m=0 E [e~k ·~xm ] = M
∫

px (~xm)e~k ·~xmd~x =

M · Φx (~k)
i.e. Equals the array pattern of a continuous aperture
where the probability density function plays the same role
as the weighting function.

I var [W (~k)] = E [|W (~k)|2]− (E [W (~k)])2

I E [|W (~k)|2] = E [
∑M−1

m1=0 e~k·~xm1 ·
∑M−1

m2=0 e−~k·~xm2 ]

= E [M · 1 +
∑

m1,m1 6=m2
e~k·~xm1 ·

∑
m2

e−~k·~xm2 ]
Assumes uncorrelated xm (E [x · y ] = E [x ] · E [y ])
⇒ E [|W (~k)|2] = M + (M2 −M)|Φx (~k)|2

⇒ var [W (~k)] = M −M|Φx (~k)|2
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