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Deviations from simple mediaDeviations from simple media
1. Dispersion: c = c()

G d h l it di i ti f(k) k– Group and phase velocity, dispersion equation:  = f(k)  c· k
– Evanescent ( = non-propagating) waves: purely imaginary k

2. Loss: c = c< + jc=

– Wavenumber is no longer real, imaginary part gives 
attenuation.

– Waveform changes with distance

3. Non-linearity: c = c(s(t))
– Generation of harmonics, shock waves

4 Refraction non-homogenoeus medium: c=c(x y z)4. Refraction, non homogenoeus medium: c c(x,y,z)
– Snell's law
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Dispersion and AttenuationDispersion and Attenuation
• Ideal medium: Transfer function is a delay

lonly
• Attenuation: Transfer function contains

resistorsresistors
• Dispersion: Transfer function is made from 

capacitors and inductors (and resistors) =>capacitors and inductors (and resistors)  
phase & phase velocity vary with frequency
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Two mechanisms for 
tt tiattenuation

1. Absorption (emphasis in this lecture)
– Classical losses (viscous term)
– Relaxation losses – change of kinetic or translational energy of molecules

into internal energy
– Dominant in ultrasound, at least at low frequency (<10-15 MHz) + sonar + , q y ( )

ultrasound in air

2. Multiple scattering
– Apparent loss as energy is only redirected not converted to heat
– Seismics: probably a mix of absorption and scattering losses, depending

on rock type and frequency
– Believed to be major cause of losses in elastography

» Our research: scattering loss in media with fractal properties» Our research: scattering loss in media with fractal properties –
relationship with cancer tumor growth
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Aixplorer,
Mickael Tanter,
ESPCI
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TopicsTopics
• Viscous attenuation
• Multiple relaxation attenuation
• Power law attenuation: Fractional wave

iequations
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Attenuation/absorption & PDEsAttenuation/absorption & PDEs
1. Absorption in air and water: ∝ f2

– Viscous differential equation, multiple relaxation

2. Also differential equation for ∝ f0

3 M di l lt d f h 13. Medical ultrasound ∝ fy, where y ≈ 1
4. General differential equation for 0 ≤ y ≤ 2?
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Viscous wave equation Additional loss termViscous wave equation
• Sound in a viscous fluid, augmented wave eq.:

–  is shear bulk viscocity coefficient
–  is a relaxation time
– Johnson & Dudgeon, problem 2.7

• Approximate solution (low frequency, low loss):

• Attenuation that increases with  2
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Dispersion relationDispersion relation
• Viscoelastic wave equation:

• Assume 1-D, and u(x,t)=exp(j(t-kx)):

• k=k<+jk==β-jα⇒ u=exp(-αx)·exp(j(ωt-βx))
• Let ωτ ¿ 1 and solve for k:  

DEPARTMENT OF INFORMATICS 10See solution of problem 2.7 for more details
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Deriving the viscous wave equationDeriving the viscous wave equation
1. Equation of state: σ(t) = E0

Ã
²(t) + τ

∂²(t)

∂t

!
– Spring + damper, Kelvin-Voigt, E0 = Young's modulus. 
– Stress: σ(t) (~pressure)
– Strain: ²(t) (deformation = displacement, u, rel. to ref. length).

Ã !

Strain: ²(t) (deformation  displacement, u, rel. to ref. length).

2. Mass conservation: 
3. Momentum conservation

²(t) =
∂u

∂x
∂2u3. Momentum conservation

(Newton's second law):
Substitute ² from Eq. (2) into Eq. (1). Then differentiate

∇σ(t) = ρ
∂ u

∂t2

with respect to the spatial variable. This will give
∇σ(t) on the left-hand side which is then replaced
by the expression from Eq (3)
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More physical + more complex: 
Vi lti l l tiViscous + multiple relaxation

• Term 1: Classical losses – exchange of energy into heat primarily• Term 1: Classical losses – exchange of energy into heat, primarily
viscous losses + heat conduction, diffusion, and radiation

• Sum: Relaxation losses – change of kinetic or translational energy
of molecules into internal energyof molecules into internal energy

• Each term in sum rises with ω2 then levels off
• Nachman et al: An equation for acoustic propagation in q p p g

inhomogeneous media with relaxation losses, JASA 1990
• Builds on Zener eq. of state: 

( ) +
∂σ(t)

E

Ã
( ) +

∂²(t)
!
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Parameter values relaxationParameter values, relaxation
• Time constants in Zener model are very 

lclose:
– Air (nitrogen and oxygen):

» Oxygen at 0 % RH, 20 C and 1 atm» Oxygen at 0 % RH, 20 C and 1 atm
⇒ c from 343.23 to 343.35 m/s between 10-100 Hz 
⇒ τσ/τ² ≈ 1.0007

– Fluorine 
» at 102 C and 1 atm
⇒c from 332 to 339 m/s between 5-200 kHz 
⇒τσ/τ² ≈ 1.043.
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A single relaxation termA single relaxation term

DEPARTMENT OF INFORMATICS 14



UNIVERSITY 
OF OSLO

Relaxation + viscous: AirRelaxation + viscous: Air
• Viscous losses 

d i t th fi tdominate the first 
term (A0)

• N=2:
Ni (78 1%)– Nitrogen (78.1%):
f1<650 Hz

– Oxygen (20.9%):
f2<80 kHzf2 80 kHz

• Dispersion: 
∆cphase < 0.14 m/s

Evans, Bass, Sutherland: Atmospheric
absorption of sound: Theoretical
predictions, JASA 1972

Bass, Sutherland, Zuckerwar, 
Blackstock, Hester, Atmospheric

f
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absorption of sound: Further
developments, JASA, 1995
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Relaxation + viscous: Sea waterRelaxation + viscous: Sea water
• A0: Viscous absorption

f t l lof water molecule
= distilled water

• N=2:
B id f 2 kH– Boron acid: f1<2 kHz

– Magnesium 
sulphate: f2<150 kHz

Dispersion• Dispersion: 
∆cphase < 0.05 m/s

Ainslie & McColm, A simplified formula
for viscous and chemical absorption
i t JASA 1998
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in sea water, JASA, 1998
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Absorption: water vs tissue
dB/km

Tissue ∝ f1

dB/cm

Tissue ∝ f1

Water∝ f2

5 MHz: tissue 2.5 dB/cm
vs salt water 0.05 - 0.1 dB/cm 
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Medicine, geophysics, ...

• Similar power laws
dB/cm

• Pressure waves:
– Granite: y ≈ 1
– Liver: y ≈ 1.3

• Shear waves:• Shear waves:
– YIG: y=2 

(Yttrium indium garnet)
– Granite: y ≈ 1

• Szabo and Wu, “A model 
for longitudinal and shear 
wave propagation in p p g
viscoelastic media”, JASA
(2000). Data for shear and longitudinal wave loss which show 

power-law dependence over four decades of frequency.

DEPARTMENT OF INFORMATICS 18



UNIVERSITY 
OF OSLO

Medical ultrasound: absorption
fy =  ·fy

• Rule-of-thumb: 
0.5 dB/MHz/cm, y=1 , y

• Ex: 5 MHz, 10 cm depth 
– 5  · 20 · 0.5 = 50 dB
– Absorption loss dominates overAbsorption loss dominates over 

spherical spreading loss

• Liver: 
• Exponent: y= 1,...,1.3
• =0.35,..., 0.9 dB/MHz/cm at 1 

MHz.
• Breast up to y=1 5• Breast up to y=1.5

Kadaba, Bhagat, Wu, “Attenuation and backscattering of ultrasound 
in freshly excised animal tissues, IEEE Trans. Biomedical Eng., 1980,
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Medical: Spectrum vs depthMedical:  Spectrum vs depth
Can show that for a 

Gaussian Depth: 0 cm
spectrum, the 
center frequency 
will fall linearly 
with depth for fy
attenuation (Kuc

p

Depth: 5 cm

attenuation (Kuc, 
1984, IEEE 
ASSP)

Simulated in Ultrasim

Depth: 10 cm

Depth: 15 cm
Simulated in Ultrasim

Depth: 20 cm
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Effect of attenuation/lossEffect of attenuation/loss
• Fall in amplitude due to spherical spreading: 

20l (R/R )20log (R/R0) 
• Additional losses

I t f d t ti– In water for underwater acoustics
– Can usually neglect it for audible sound 

• Combined: 20log (R/R0) +  RCombined: 20log (R/R0)   R 
• Plays a role in estimating level i.e. range for

– long-range sonar
– Ultrasound in air positioning (40 - 80 kHz)
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Attenuation - DispersionAttenuation Dispersion

• Attenuation and dispersion 
are linked to guaranteeare linked to guarantee 
causality

• O'Donnell, Jaynes, Miller, 
`Kramers-Kronig relationshipKramers Kronig relationship 
between ultrasonic 
attenuation and phase 
velocity,' J. Acoust. Soc. Am., 
19811981

– Predicted dispersion in dog 
myocardium 

– Very small => distortion of pulseVery small  distortion of pulse 
form in medical ultrasound is 
negligible
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Relaxation model - medical ultrasoundRelaxation model medical ultrasound

• Two relaxation terms, fit to f1 for f ∈1..5 MHz
– Tabei, Mast, Waag: Simulation of ultrasonic focus aberration 

and correction through human tissue, JASA, 2003
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Relaxation model - medical ultrasoundRelaxation model medical ultrasound

• f2 + two relaxation models, fit 
to f1.1 for f ∈ 0.1..30 MHz

• Yang and Cleveland, Time 
domain simulation of nonlinear 
acoustic beams generated by 
rectangular pistons withrectangular pistons with 
application to harmonic 
imaging, JASA, 2005

• Note: Parameter values are 
found from optimization, they 
don’t really correspond to 
actual physical relaxation 
processes in the medium as in p
the air and water models.
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Lossy wave equationsLossy wave equations
• Fractional derivatives:

• Physics-based:

– Szabo94 (Chen,Holm03):

Chen Holm 04:Physics based:
– Viscoelastic, y=2:

– Chen, Holm 04:

– Wismer 06, Caputo 67:

Solution 2 for ¿1

, p
More physical than
the others

– Solution ∝ ω2 for ωτ¿1 – Solution ∝ ωy for ωτ¿1
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Derivative of arbitrary orderDerivative of arbitrary order
Two interpretations of fractional derivative:
1. Fourier:

2. Convolution of ordinary derivative of integer
order m> and causal memory function:
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Fractional derivative (Caputo)
• Caputo: order m-1 ≤  <m: 

Fractional derivative (Caputo)

Fi t i t d d i ti th l ti– First integer order derivative, then convolution
– Interpretation of e.g. α=0.2 order differentation:

» m=1. order differentiation
» Integration with forgetting function, order m-α=0.8

– Memory is introduced
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Conceptual modelConceptual model

Many fractional wave equations
are descriptive only
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Fractional constitutive equationFractional constitutive equation
• Stress, σ vs strain ² - Fractional Kelvin-Voigt

» E0 : elastic modulus» E0 : elastic modulus
» τσ : ratio of viscosity and elasticity
» Y. Rossikhin and M. Shitikova, “Applications of fractional 

calculus to dynamic problems of linear and nonlinearcalculus to dynamic problems of linear and nonlinear 
hereditary mechanics of solids”, Appl. Mech. Rev., 1997

– α=1 is normal viscoelastic case (figure)
» Spring (Hooke’s law) + damper like in a car» Spring (Hooke s law) + damper like in a car

2012.02.01
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Wave equation
Fractional loss operator

Wave equation
• Conservation of mass & momentum =>

• M. Caputo, “Linear models of dissipation whose Q is almost 
frequency independent–II”, Geophys. J. Roy. Astr. S. 1967

– Dispersion equation, u = exp{i(ωt – kx)}
imaginary part of k is loss:» imaginary part of k is loss:

k2 − ω2/c20 + (τσiω)
α k2 = 0.
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Solve dispersion equationSolve dispersion equation
k2 − ω2/c20 + (τσiω)

α k2 = 0.

• Solution: k = ω/c(ω) – iαk = ω/c(ω) – iα0ω
y

• Low-frequency asymptote  P-waves in ultrasoundq y y p
– y = α+1, y ∈ (1,2], α ∈ (0,1]

• High frequency asymptote  S-waves in elastography
– y = 1-α/2, y ∈ [0,1), α ∈ (0,2]

» Holm Sinkus ” A unifying fractional wave equation for» Holm, Sinkus, A unifying fractional wave equation for 
compressional and shear waves”, JASA, 2010
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Attenuation, fractional Kelvin-
V i tVoigt y = α+1 y = 1-α/2

α = 0.1, 0.3, 0.7, and 1
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Phase velocity fractional Kelvin-VoigtPhase velocity, fractional Kelvin Voigt
Elastography
shear waves:
large dispersion

Ultrasound 
compression waves:
hardl an y = α+1

Warning: c →∞

hardly any
dispersion

Warning: c →∞
for large frequencies!!α = 0.1, 0.3, 0.7, and 1

α = 1: viscoelastic case
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Fractional Zener model insteadFractional Zener model instead
• Stress, σ vs strain ² - Standard linear solid model

» τ²
β ≤ τσ

α :Often the two time constants are very
close

» α ≥ β, we will set them equal
» Arterial viscoelasticity, brain, doped corning glass, 

rock liver metals polymeric materials rubberrock, liver, metals, polymeric materials, rubber
» Bagley, Torvik, “On the fractional calculus model of 

viscoelastic behavior”, J. Rheol, 1986
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Fractional Zener: Wave equationFractional Zener: Wave equation
• Wave equation:

– Two fractional loss terms instead of one
– For α=β=1, this is a single relaxation process, i.e. one

term in attenuation for salt water, air, …

» Holm, Näsholm,"A causal and fractional all-
frequency wave equation for lossy media"frequency wave equation for lossy media , 
Journ. Acoust. Soc. Am, Oct. 2011.
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Fractional Zener: SolutionFractional Zener: Solution
• Dispersion relation k2 =

ω2

c2
1 + (τ²iω)β

1+ (τ iω)α

• Attenuation:

c20 1 + (τσiω)α

1+α l f i

k =
ω

c(ω)
−iαk, αk(ω) ∝

n ω1+α low frequencies

ω1−α/2 intermediate frequencies

ω1−α high frequencies

2 lo freq encies

• Standard relaxation, α=1:
g q

αk(ω) ∝
n ω2 low frequencies

ω1/2 intermediate frequencies

ω0 high frequencies
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Attenuation fractional ZenerAttenuation, fractional Zener

1. Low frequency
2. Medium frequency = High frequency for Kelvin-Voigt model
3. High frequency

β 0 1 0 3 0 7 d 1
DEPARTMENT OF INFORMATICS 39

α = β = 0.1, 0.3, 0.7, and 1



UNIVERSITY 
OF OSLO

Phase velocity fractional ZenerPhase velocity, fractional Zener

Fi itFinite c as ω→∞

α = β = 0.1, 0.3, 0.7, and 1
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MR Elastography brain
• Experimental and model wave speed 

MR Elastography, brain

and dampingHigh dispersion

• Klatt et al, Noninvasive assessment of the rheological behavior of 
human organs using multifrequency MR elastography: a study of
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human organs using multifrequency MR elastography: a study of 
brain and liver viscoelasticity, Phys. Med. Biol 2007
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Multiple relaxation vs fractional Zener

• Fractional Zener
( )

1 + (τ²iω)β

– Inverse Fourier transform: Mittag-Leffler function

κZ(ω) = κ0
+ ( ² )

1 + (τσiω)α

Inverse Fourier transform: Mittag Leffler function

• Multiple relaxation 

κN(ω) = κ0−iω
NX κντν

1+ iω
→ κ0−iω

Z ∞
0

κν(Ω)

Ω+ iω
dΩ

– Inverse Fourier:  Impulse + causal relaxation functions (= 
exponential functions)

X
ν=1 1+ iωτν

Z
0 Ω+ iω

• Näsholm and Holm, "Linking multiple relaxation, 
power-law attenuation and fractional wave equations "

DEPARTMENT OF INFORMATICS

power law attenuation, and fractional wave equations,  
Journ. Acoust. Soc. Am, Nov. 2011
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Power law

Stretched exp
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S. P. Näsholm, Nov 2011
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45

Power law tails, i.e. fractal
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ConclusionsConclusions
• Wave equation from fractional stress-strain

– Causal unlike many other constructed equationsCausal, unlike many other constructed equations
– Finite c

• Describes compressional waves and shear waves in 
2/3 different frequency regimes q y g

– power law attenuation ωy

• Equivalent to a frequency weighted multiple relaxation
model

– In general: Σ exponentials power law
• Works in progress: Spatial fractal properties

– Relation medical elastography - spatial  property
– Simulation, measurement, theoretical modeling
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Array Processing ImplicationsArray Processing Implications
• Lossy media cause signals to decay more 

idl th di t d b id l tirapidly than predicted by ideal wave equation
– Limits range
– Ultrasound imaging: low frequency deeperUltrasound imaging: low frequency  deeper 

penetration, but poorer resolution

• Attenuation and dispersion are coupled
A i f2 di i i– Attenuation ∝ f2 ⇒ dispersion is zero
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