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Deviations from simple media

1. Dispersion: ¢ = ¢(o)
— Group and phase velocity, dispersion equation: o = f(k) = c- k
— Evanescent ( = non-propagating) waves: purely imaginary k
2. Loss:c=cg+]cq

— Wavenumber is no longer real, imaginary part gives
attenuation.

— Waveform changes with distance
3. Non-linearity: ¢ = c(s(t))
— Generation of harmonics, shock waves

4. Refraction, non-homogenoeus medium: c=c(x,y,z)
— Snell's law
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Dispersion and Attenuation

* |deal medium: Transfer function is a delay
only

o Attenuation: Transfer function contains
resistors

* Dispersion: Transfer function is made from
capacitors and inductors (and resistors) =>

phase & phase velocity vary with frequency
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Two mechanisms for

attenuation
1. Absorption (emphasis in this lecture)

— Classical losses (viscous term)

— Relaxation losses — change of kinetic or translational energy of molecules
into internal energy

— Dominant in ultrasound, at least at low frequency (<10-15 MHz) + sonar +
ultrasound in air

2. Multiple scattering

— Apparent loss as energy is only redirected not converted to heat

— Seismics: probably a mix of absorption and scattering losses, depending
on rock type and frequency

— Believed to be major cause of losses in elastography

» Our research: scattering loss in media with fractal properties —
relationship with cancer tumor growth
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In vivo assessment of carotid plaque elasticity

RETEITEC

.~ YALE NEW HAVEN HOSPITAL

car art test,
Tue Aug 510:49:23

SL 154 /Breast/Breast 1
Ml 1.6 TIb0.3 TIs 0.3
+180 KPa

3 I-'

Stddev
BRatio

Aixplorer,
Mickael Tanter,
ESPCI

AREA OF PLAQUE

Investigational Use Only — Not for Diagnosis

FPS ; 0.4 - Arbitration : cineloop - maxecho id ; 76/1509, ssix: 0 --filter deactivated new
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Topics

 Viscous attenuation
« Multiple relaxation attenuation

« Power law attenuation: Fractional wave
equations
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Attenuation/absorption & PDEs

1. Absorption in air and water: o f?
— Viscous differential equation, multiple relaxation

2. Also differential equation for o f°
Medical ultrasound « ¥, wherey ~ 1
4. General differential equation for 0 <y < 2?

w
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Viscous wave equation  Additional loss term

e Sound in a viscous fluid, augmented wave eq.: /
19239  4u 0 19239 8
V2E = - V2E = —T V2%
c2 O0t2 3pocl ot c? Ot2 T@t

— uis shear bulk viscocity coefficient
— tis arelaxation time
— Johnson & Dudgeon, problem 2.7
* Approximate solution (low frequency, low loss):
T2
k’g ~ ——W

2c
o Attenuation that increases with ®?
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Dispersion relation

. . ] 2
* Viscoelastic wave equation: v2y — la_ 0

2
2 Ot? 8(v) 0

o Assume 1-D, and u(x,t)=exp(j(mt-kx)):

2  (Jw )2
(—jk)“u(z,t) w(z, ) +7(jw(—jik))u(z,t) =0

e k=Kp+|Ks=F-Ja = u=exp(-ax)-exp(j(wt-5X))

e Let wr < 1 and solve fork: a= %uﬂ

DEPARTMENT OF INFORMATICS See solution of problem 2.7 for more details 10
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Deriving the viscous wave eguation
Oe(t
1. Equation of state: o(t) = Eo (e(t) + 7 ;(t )>
— Spring + damper, Kelvin-Voigt, E; = Young's modulus.
— Stress: o(t) (~pressure)
— Strain: ¢(t) (deformation = displacement, u, rel. to ref. length).

2. Mass conservation: e(t) = g_u

T
3. Momentum conservation 82y
(Newton's second law): Vo) =r55

Substitute € from Eqg. (2) into Eq. (1). Then differentiate

with respect to the spatial variable. This will give
Vo (t) on the left-hand side which is then replaced

by the expression from Eq. (3).
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More physical + more complex:
Viscous + multiple relaxation

wWn
—ko—AwQ—I— A 2
o) nzl n 2_|_w

« Term 1: Classical losses — exchange of energy into heat, primarily
viscous losses + heat conduction, diffusion, and radiation

 Sum: Relaxation losses — change of kinetic or translational energy
of molecules into internal energy
e Each term in sum rises with w? then levels off

 Nachman et al: An equation for acoustic propagation in
Inhomogeneous media with relaxation losses, JASA 1990

« Builds on Zener eq. of state:

o(t) + 727 = B (e(t) + Taa;(“>
¢ 12
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Parameter values, relaxation

« Time constants in Zener model are very
close:
— Air (nitrogen and oxygen):

» Oxygen at 0 % RH, 20 C and 1 atm
= ¢ from 343.23 to 343.35 m/s between 10-100 Hz
= 7 /7. ~ 1.0007

— Fluorine

» at 102 C and 1 atm
=C from 332 to 339 m/s between 5-200 kHz
=7 /T, ~ 1.043.
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o attenuation coefficient

ko = Ap—ent
w wn
Attenuation for relaxation model
3
1D : T T T
10
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1D L L L
10° 10" 10° 10" 10

0T, 'Laf'tﬁ =099
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Relaxation + viscous: Alr

e Viscous losses
dominate the first
term (A,)

e N=2:

— Nitrogen (78.1%):
f1<650 Hz

— Oxygen (20.9%):
f2<80 kHz

* Dispersion:
AC, .. <0.14 m/s

phase

Evans, Bass, Sutherland: Atmospheric
absorption of sound: Theoretical
predictions, JASA 1972

Bass, Sutherland, Zuckerwar,
Blackstock, Hester, Atmospheric
absorption of sound: Further
developments, JASA, 1995
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Relaxation + viscous: Sea water

A,: Viscous absorption
of water molecule

= distilled water
N=2:

Boron acid: f,<2 kHz

Magnesium
sulphate: f,<150 kHz

Dispersion:
AC .o < 0.05 m/s

phase

Ainslie & McColm, A simplified formula
for viscous and chemical absorption
in sea water, JASA, 1998
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- =ea absorption, parameters: temperature, salinity, pH, depth
Pacific: 4 ©, 34 ppt, 7.7 pH, 1 krm /4"
w Fed Sea: 22 C 40 ppt, 8.2 pH, 0.2 km /:" ]
F| ———Arctic: -1.5 C, 30 ppt, 8.2 pH, 0 km i
| — — - Baltic: 8 C, 8 ppt, 7.9 pH, 0 km /;f_“.' f
Tual " IEERRRREEE Distilled: 20 C, 0 ppt, 8 pH, O kim / ,-ff 1
— - ]
E Mo :
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= // e ]
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RETEITEC

Absorption: water vs tissue

dB/km dB/cm
4 Sea absorption, parameters: temperature, salinity, p
10 T T =TT ——rrT
] Pacific: 4 C, 34 ppt, 7.7 pH, 1 km
103 _ """"" Red Sea: 22 C, 40 ppt, 8.2 pH, 0.2 km
E| ———Arctic: -1.5 C, 30 ppt, 8.2 pH, 0 km
F| — =~ Baltic: 8 C, 8 ppt, 7.9 pH, 0 km
s | Distilled: 20 C, 0 ppt, 8 pH, O km
t | MS0, -~ 7 T
< L f o E S g
g 'y T g
5 g7 S
| 7 s E
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Absarption in tissue compared to water

Tissue o< fl

- .

/'/W teroc 2

T 5 MHz: tissue 2.5 dB/cm :
' vs salt water 0.05 - 0.1 dB/cm;
— Tigsue: 0.5 dBfemiMHz & 1 MHz =l

—— —Arctic: -1.6C, 30 ppt, 82 pH, 0 km
""""" Distilled: 20 C, 0 ppt, 8 pH, 0 km

10! 10
Frequency [MHz]
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Medicine, geophysics, ...

i dBlcrcT)]o 0.1 F:equency(Ml;I:) 100 1000
e Similar power laws 1000':‘ S s S
e Pressure waves:

— Granite:y~1 100 /]

— Liver:y~1.3 /
 Shear waves: ol

§ 10 ,
- YiG:y=2 o c Liver Long.
(Yttrium indium garnet) T 8
— Granite:y~ 1 § g | /
9 3

Granitg 1 Shear / G Leng, .
» Szabo and Wu, “A model - L7 /Granitez Long p

for longitudinal and shear ! f / 74 &

. . " : LCYIG
V\{&VG propagatlo_n In [ Granite 1 Long .~ Shear
viscoelastic media”, JASA ;4 :

(2000). Data for shear and longitudinal wave loss which show

power-law dependence over four decades of frequency.
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‘Medical ultrasound: absorption
0.9491-09

OL:OL()'fy

 Rule-of-thumb:
0,=0.5 dB/MHz/cm, y=1

« Ex:5 MHz, 10 cm depth

1~}
T

AT Imﬂgl e/
1

- 5.20-05=50dB T
— Absorption loss dominates over . . |
spherical spreading loss SR S
e Liver: n
 Exponent:y=1,...,1.3 1
e ,=0.35,..., 0.9 dB/MHz/cm at 1
MHz. 6

 Breastup toy=1.5

Kadaba, Bhagat, Wu, “Attenuation and backscattering of ultrasound
in freshly excised animal tissues, IEEE Trans. Biomedical Eng., 1980,

FREQLENCY (Miz)

Fig. 7. Attenuation coefficient versus frequency for freshly excised (o)
and fixed (=) spleen tissue.
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|dB], depths: 0.0, 50,10.0,15.0,200 em
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Medical: Spectrum vs depth

Two-way Transfer Functions, attenuation 0.50 dB/(cm*MHz). exp 1

N~

T
Depth: o.cm

\

28-APR-2011 13:52

N

N

4

s

Ve
/ i

0 1

2

3
[MHz]. Gaussian, center 3.25 MHz, -6 dB bw 50.00 %
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Can show that for a
Gaussian
spectrum, the
center frequency
will fall linearly
with depth for f¥
attenuation (Kuc,
1984, IEEE
ASSP)

Simulated in Ultrasim
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Effect of attenuation/loss

20log (R/R,)

Additional losses
— In water for underwater acoustics
— Can usually neglect it for audible sound

Combined: 20log (R/Ry) + a R

Plays a role in estimating level i.e. range for

— long-range sonar
— Ultrasound in air positioning (40 - 80 kHz)
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Fall in amplitude due to spherical spreading:
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Attenuation - Dispersion

e Attenuation and dispersion
are linked to guarantee

causality

e O'Donnell, Jaynes, Miller,
"Kramers-Kronig relationship
between ultrasonic
attenuation and phase
velocity,' J. Acoust. Soc. Am.,

1981

— Predicted dispersion in dog

myocardium

— Very small => distortion of pulse
form in medical ultrasound is

negligible
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is illustrated in the top panel.
digpersion predicted by applying Eg. (30) to the attenuation
data of the top panel.

Tﬂ; NORMAL  MYOCARDIUM
i
£ o8 ) /
o -
E -
Wy o4 /
L=
."-"z
g %
= 02
3 e — Measurad
= -~
fid -
| -
L oo
_-—I_. e
30
2.5 - !
~ 20} - é
-
£ P
= s g
L5 =
5|
1.0
——Fredicted |
a5 |
!
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F1G. 5. The attenuation measured in normal dog myoccardivm
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0= —kg = Agw? + ZAn —

Wn

Relaxation model - medical ultrasound

 Two relaxation terms, fit to fl for f €1..5 MHz

— Tabel, Mast, Waag: Simulation of ultrasonic focus aberration

Attenuation Coefficient, o (dB/cm)

and correction through human tissue, JASA, 2003

Attenuation Coefficient, Linear off = 0.5 dBf(cm MHz) red.

5 L)
Fit
45F| == -1. term alone
""""" 2. term alone
ar == =142 terms
target: linear
35
+*  fitted range
3F e
~""F—
.-
25F _’_.v’
-
-~
2 -
R
1.5 PV
N
1 Ve
-
0sf H Ll
\“,
D o~ L
0 2 4 B 8 10

Freguency, f (MHz)
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Sound Speed, ¢ (m/s)

—I—w

Sound speed
1530 T T
Fit
===1 term alone
129 e 2. term alone
= =1 44 terms
L
w1528
1527 F
""""""""""""""""""""""""""""
‘-"—'l'—
1526 F -
e
-
e
N
1525 F e
e
-
-
L
1h24 M L L
0 2 B 8 10

Freguency, f (MHz)

24




NIVERSITY
F OSLO

OC

o =

—kg

Wn,

Aow -+ ZAn 2—|—w

Relaxation model - medical ultrasound

f2 + two relaxation models, fit
to fl1for f € 0.1..30 MHz

Yang and Cleveland, Time
domain simulation of nonlinear
acoustic beams generated by
rectangular pistons with
application to harmonic
imaging, JASA, 2005

Note: Parameter values are
found from optimization, they
don’t really correspond to
actual physical relaxation
processes in the medium as in
the air and water models.
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Attenuation, target power law exponent = 1.1 - ¥ang, Cleveland, JASA 2005

10F

= ==1. term, 0.237 MHz

Target

2. terrn, 3.749 MHz

1+2+3 terms
fitted range

Attenuation Coefficient, o (dB/cm)

1 ' 1 — S g

T T R N TR R R TR RRRERRRERRARRERRRNEE
vl

L

P

g

10 15 20 25 30 35 40
Frequency, f (MHz)

w
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) 1 0%u e Fractional derivatives:
¢y Ot — Szabo94 (Chen,Holm03):
ovtiu
_ Lu o — By,
* Physics-based: ~“Chen. Holm 04

— Viscoelastic, y=2: Lu o — 2 (—92yu/2,,
a4t

9 = Ismer Oév, Caputo 67
Lu=r1 (VQU) > —,,83u/8t I oY1 ( 2u) More physical than

s 2 _ - y—1
at CO \U’_Ty Otv—1 \

— Solution o w? for wr«k1 — Solution o w¥ for wr<1

w
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Derivative of arbitrary order

Two interpretations of fractional derivative:

1. Fourier: pp (do;fzit)):(iw)aﬁ’(w)

2. Convolution of ordinary derivative of integer
order m>q, and causal memory function:

d*f(t) dmf(t) 1
X *
At dt™m tl—l—a—m

DEPARTMENT OF INFORMATICS
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Fractional derivative (Caputo)

e Caputo: order m-1 < o <m:
1 e M)
5/

— (+ _ Yat+1—m
\U T)

A

CDof(t) =

I (m
'\

11v

— First integer order derivative, then convolution
— Interpretation of e.g. «=0.2 order differentation:

» m=1. order differentiation

» Integration with forgetting function, order m-a=0.8
— Memory is introduced

DEPARTMENT OF INFORMATICS

dr

29




£ £4% UNIVERSITY
=¥l 2 OF OSLO

Conceptual model

/
ta losses ;, L ———N| 2a Consiitutive
/ i A equations
i
ff Long-term
; Memary
,

fy Long-range

ff Correlation
;J‘;h- Fractal RS, I'*~:I 2b, Conservation

;-“ propertias [ o laws
/
]
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3. Wave equation

4. Fower law
attenuation

Many fractional wave equations

are descriptive only

30




Fractional constitutive equation

» Stress, o vs strain e - Fractional Kelvin-Voigt

80‘6(75)]

o(t) = Ey [e(t) + 7 5ra

M

E, : elastic modulus

» T, ratio of viscosity and elasticity

Y. Rossikhin and M. Shitikova, “Applications of fractional
calculus to dynamic problems of linear and nonlinear

hereditary mechanics of solids”, Appl. Mech. Rev., 1997
— «=1is normal viscoelastic case (figure)
» Spring (Hooke’s law) + damper like in a car

>

v

2012.02.01
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Wave equation

Fractional loss operator

e Conservation of mass & momentum =>

1 O%u &

« M. Caputo, “Linear models of dissipation whose Q is almost
frequency independent—II”, Geophys. J. Roy. Astr. S. 1967

— Dispersion equation, u = exp{i(wt — kx)}
» Imaginary part of k is loss:

k2 — wz/cg + (10iw)* k2 = 0.

DEPARTMENT OF INFORMATICS
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Solve dispersion equation
k2 — w? /et + (10iw)* k2 = 0.

Solution: k = w/c(w) — la;, = wlc(w) — la W
Low-frequency asymptote < P-waves in ultrasound
— y=atl,ye(1,2], a € (0,1]

High frequency asymptote < S-waves in elastography
—y=1-a/2,y €]0,1), a € (0,2]

» Holm, Sinkus, ” A unifying fractional wave equation for
compressional and shear waves”, JASA, 2010
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33




Attenuation, fractional Kelvin-
Voigt Y= ot y = 1-a/2

a=0.1,030.7 and 1

o = 1: viscoelastic case
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Phase velocity, fractional Kelvin-Voigt

Ultrasound
compression waves:
hardly any
dispersion
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clw) / c,

10

Elastography

shear waves:
large dispersion

% Warning: ¢ — oo
«a=0.1,0.3,0.7,and 1

o = 1: viscoelastic case

for large frequencies!!
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Fractional Zener model instead

 Stress, o Vs strain e - Standard linear solid model

» 1./ <7 2:0ften the two time constants are very
close

» «a > 3, we will set them equal

Arterial viscoelasticity, brain, doped corning glass,
rock, liver, metals, polymeric materials, rubber

Bagley, Torvik, “On the fractional calculus model of
viscoelastic behavior”, J. Rheol, 1986

>

v

>

A\
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Fractional Zener: Wave equation

 \Wave equation:
1 0%u N « TP 9P +2y
cd ot2 7 ot~ cd Oth+2

=0

— Two fractional loss terms instead of one

— For a=p=1, this is a single relaxation process, i.e. one
term in attenuation for salt water, air, ...

» Holm, Nasholm,"A causal and fractional all-
frequency wave equation for lossy media”,
Journ. Acoust. Soc. Am, Oct. 2011.
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Fractional Zener: Solution
. w? 1+ (reiw)P

» Dispersion relation k2
o Attenuation:
W :
k= (@) —ia, ap(w) o {

w1+04
wl—a/2
wl—a

e Standard relaxation, a=1:

ap(w) o« {

DEPARTMENT OF INFORMATICS

W

W
W

2
1/2
0

c% 1+ (1oiw)e

low frequencies
intermediate frequenc
high frequencies

low frequencies
intermediate frequencies
high frequencies

e
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Attenuation, fractional Zener

-
o
S Sy S S —

I

|

|

|

|
o
l

OU

10 10 1

1. Low frequency
2. Medium frequency = High frequency for Kelvin-Voigt model
3. High frequency

a=03=0.1,03,07and 1

DEPARTMENT OF INFORMATICS

39




Phase velocity, fractional Zener

T =101 T =1000zt
(4] E o — —— Bﬂ-ﬁ F f
1 /
25}
o U:::Eﬂ
E) 3 15
o [&]
10}
5_
o e Y LLLILTERT LR R LY
o=0.1
i H : 0 = i i :
100 10 10° 10" 10" 10" 10° 10° 10" 10
G]'TG
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Finitecas w — o

a=03=01,0.3,0.7and 1
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MR Elastography, brain

fractional Zener

[
1.8 . : . . . : 70
16| High dispersion_...s— e et
L e
141 e > e el
7 o = 40 A
E 1-2 1--.---./.:(__ T 1 : ) -_-ay;‘.:".'_
[&] _l"- - R : 3{] [ __.‘F‘JE
1077 ] A
20 g
|r ."“- '{'
: S
'D'B -1 ) lr - 11:' I .".,- ./:.f d
W lp «—— — .\ (u,+u,)lp S0 0 e—— —» oo
.D__B o L , \ EI P . | ) )
125 250 375 50.0 B2.5 12.5 25.0 375 50.0 B25
frequency f[Hz] frequency f[Hz]

« Kilatt et al, Noninvasive assessment of the rheological behavior of
human organs using multifrequency MR elastography: a study of
brain and liver viscoelasticity, Phys. Med. Biol 2007
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Multiple relaxation vs fractional Zener

 Fractional Zener

1+ (Te’iw)ﬁ
rkz(w) = Ko

1+ (15iw)®
— Inverse Fourier transform: Mittag-Leffler function
e Multiple relaxatlon

ky(w) = kg—iw Z

RyTy . ) S KV(Q)
> KQ—1w

1—|—sz,/ 0 Q4w

— Inverse Fourier: Impulse + causal relaxation functions (=
exponential functions)

ds?

* Néasholm and Holm, "Linking multiple relaxation,
power-law attenuation, and fractional wave equations,"
Journ. Acoust. Soc. Am, Nov. 2011
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(Deviation) The Mittag-Leffler function E, 1(x)

Generalization of the exponential function

Definition Eo.75(—x"")
. i N 1o° Power law
Eo1(x) = -
= M(an+1)

o0 xn
[Compare: exp(x) = Z m

n=0

(10)

Egzsl-x") [dB]

Stretched exp

Integral representation, Laplace-transform relation

| > 1 aQ*"Lsin(an)
E.1(—ax®) = —Af(Q,3)dQ,  fa(Q,a8) == 11
i-at) = [T e @), (@ e (D

Summable £, (£, a) : / £ (Q,a)dQ =1 (12)
DEPARTMENT OF INFORMATICS 0

S. P. Nasholm, Nov 2011
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(Cont.) Linking NSW and fractional Zener wave equations

Wave equations are equal when generalized compressibilities are equal:

rz(t) = rn(t) =
HJZ,Et)
{ate) [ "] - bee) 5 {mola = 72780 Eua( = (e/r)™) }} =

o

_ {5(r) {ﬁo - /OOC ko (Q) dﬂ} - H(r)%{ /:C e 1, (Q) dQ}}

rn(t)
What ~,(2) to select?

From Mittag-Leffler integral representation (11): kz(t) = rn(t)

o _ 1 ko(TE — 72)Q% Lsin(an)
for ku (Q) = ko(l — 78 /7)) fu(Q, 75%) = = o ‘
or (&) = ko(l = 7/75 ) (70 ™) = T oyaa 1+ 2(r0 ) cos(am) + 1

DEPARTMENT OF INFORMATICS S. P. Nasholm, Nov 2011
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10007 , 0=0.8

g
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" Power law tails, i.e. fractal
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Conclusions

Wave equation from fractional stress-strain

— Causal, unlike many other constructed equations

— Finite c
» Describes compressional waves and shear waves in
2/3 different frequency regimes

— power law attenuation wv

. quéivlalent to a frequency weighted multiple relaxation
mode

— In general: X’ exponentials < power law

* Works in progress: Spatial fractal properties
— Relation medical elastography - spatial property
— Simulation, measurement, theoretical modeling
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Array Processing Implications

* Lossy media cause signals to decay more
rapidly than predicted by ideal wave equation

— Limits range

— Ultrasound imaging: low frequency < deeper
penetration, but poorer resolution

« Attenuation and dispersion are coupled
— Attenuation « f?2 = dispersion is zero
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