INF5410 Array signal processing.
Chapter 2.4 Refraction and diffraction

Sverre Holm
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Deviations from simple media

1. Dispersion: ¢ = ¢(o)
— Group and phase velocity, dispersion equation: o = f(k) = c- k
— Evanescent ( = non-propagating) waves: purely imaginary k
2. Attenuation: c = Cy + JCq

— Wavenumber is no longer real, imaginary part gives
attenuation.

— Waveform changes with distance
3. Non-linearity: ¢ = c(s(t))
— Generation of harmonics, shock waves

4. Refraction: c=c(x,y,z)
— Snell's law
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Reflection, refraction, diffraction

e Click
http://lectureonline.cl.msu.edu/~mmp/kap13/cd372.htm

When a wave meetis the interface, 101s

either refracted or reflected. .o
PR BE R A wave is diffracted by an aperture.
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4. Refraction - avbgyning

 Unchanged phase on
Interface:

— — —
ki T =kr T =kt T

e Fig 2.10:

|E>| -sinf; = |k_7~>| - Sin @ = |E>| - Sin 6y

* Reflected (same c) :
—wlc =06, = 0
 Refracted, Snell's law:
sind;/c;=sind,/c, Wave
[ ] Wi I Iebrand Sne II Von Royen y Figure 2,10  An incident wave striking a discontinuity in the medium resulls in a reflected wave

and a transmitted wave. The angle of reficction equals the angle of incidence, and (he angle of
N L 159 1_1626 refraction of the transmitled wave obeys Snell’s Law. In this example, the propagation speed in
the lower medium is greater than in the upper

S
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Critical Angle — total reflection

 sinG,/c;=sind./c,
 Total reflection for all 6; which result in 6,>90°
 Critical angle sin6,=c//c,

e Ex: steel ¢,=5800 m/s, water ¢,=1490 m/s,
0.<16.5°

e Important for containing 100% of transmitted
energy inside optical fibers
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o

Figure 2.11 A linear change in the speed of sound with depth results in circular rays. The linear
sound profile is shown in the right panel.

Problem 2.8. More general: c=c,(1+ay)
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Snell’'s law on differential form

e Snell's law: Sinf(y) _ sin6(y — dy)

c(y) c(y — 6y)
« Multiply by c(y-dy) and subtract sinf(y)
sin6(y)

sinf(y—dy)—sinf(y) = T

Uu
“\Jd/

e(y—dy) —c(y)]

e |n the limit: .-
1 dsiné . 1 @ :
- sind(y) dy c(y) dy &K _T
e Solution: ;0 ______
In(sinf) = In(c) + Cy 'y sin@:-}%

sinf(y) = C1c(y)
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Linear variation of ¢ with depth

sinf(y) = C1c(y)

* Linear variation of ¢ with depth. Find 6(y)

when wave is horizontal at depth y,

— Linear variation: c(y)=ay
— Boundary condition:  sinB(y,)=1 => C,=1/ay,

e Solution:
sinf = Cic(y) = ay/ayo = y/yo

A circle with radius y,
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Underwater acoustics:
Sound speed profiles

¢ =1448.6 +4.618T —0.0523T* +1.25(S —35) +0.017D .

>/ o Empirical law:
/ < Decreasing temperature oC = VeIOCity Of Sound (m/S),
/Constanttemperature .T = temperature (OC)’

Depth

oS = salinity (per thousand, promille),
D = depth (m).

Fra: J Hovem, TTT4175
Marin akustikk, NTNU
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Sound propagation: underwater peak
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Deep sound channel

 C decreases as the water cools
but increases with depth.

 Deep sound channel (DSC)

* From the cold surface at the
poles to ~1300 m at the equator

* Sound can propagate
thousands of kilometers

 1950s: US Navy SOSUS
(Sound Ocean Surveillance
System) network to monitor
Soviet submarines.

e Kuperman and Lynch, “Shallow-
water acoustics”, Physics
Today, 2004
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Bending of sound in air

e c~331.4+0.6-T
around room temperature

e Ex: T=20 C =>c=343,4 m/s

» Usually T falls with height 4 - - .
— Sound is bent out into space. http://www.aftenposten.no/nyheter/iriks/article4223421.ece

Ctgoing Rays' of Sound
Under Meutral Conditions
YWhen There |z Mo
Ternperature Inversion

* Inversion: opposite => Sound can

i
li ,’f}/ \ P RSuug_d Rahys
P eaching the
be heard over much longer x ~,\ B eaching the
H Y ! A /./ Becausze of the
d |Stan ces \ . | / e Temperature
. ) - .
— Elephants at sunrise and dawn: range of __ Inversion
infrasound increases from 1-2 km to 10 km ‘\ ; in
. . T, z - H D!:
— Inversion layer also makes polluted air e

The Receptaor

visible The Ground — %
The Zource
1 or 2 miles)
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wind

Sound refraction in wind v

SOURCE (a)

SHADOW HMNEAR
z (b) _  THE GROUND

P . —>

g |——== —_——

Ywor =T FIG. 14, {a) Refraction downward—inversion or downwind
FIG. 12. Variation of wind velocity and temperature in the propagation. (b) Refraction upwards—lapse or upwind prop-
viginity of a flat ground surface {z <~ 10 m). agation,

« Effective c = cy + V,,ing(2)

— Downwind, tailwind (medvind): higher c for higher height, z:
refraction towards ground: louder traffic noise from highway (like
inversion)

— Upwind, headwind (motvind): lower c for higher height, z:
refraction away from ground: weaker noise

— Piercy et al., Review of noise propagation in the atmosphere, JASA, 1977
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« Refraction and dispersion
» Index of refraction: n=c/v, < 1, i.e. v,>c (v, = C?)
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Ray tracing - ionosphere
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http://www.cpar.qinetig.com/raytrace.html
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2.4.2 Ray Theory

 Method for finding ray path based on
geometry alone = high frequency
approximation

 Read the detalls in the book if you need to
understand better underwater acoustics or
modeling of the ionosphere!
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Funaiion Ganaraior

250-mm-long steel cylinder rods
lattice constant a=2.5 mm

radius of cylinders: R=1.0 mm
Csteel =6100 m/s, cair=334.5m/ s

f=41.21048.0 kHz

Recernng Transduces

N

Cscilloscope

FIg. 2. ICalor online]l Sche-
miatic of the expermental setup
uzzd to messure the tmnsmission
of ulkmsonic wave in a ST, con-
ssting of two transducens, a fat
rectangular slab of steel cylinders.
a functon generator, and an oscl-
loscope. The SC, the rectangular
slab of steel cylinders shown as
the: mdddle-bottom inset is placed
between bwo transducers and the
left-top irset chows measurameants
of the amplitude comparzores with
the abisarber (solid) to without the
absorber (dashed §.

Feng, Liu, Chen, Huang, Mao, Chen, Li, Zhu, Negative refraction of acoustic waves in
two-dimensional sonic crystals, Physical Review B, 2005
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Periodic media

« Acoustic metamaterials can
manipulate sound waves in
surprising ways, which include
collimation, focusing, cloaking, sonic
screening and extraordinary
transmission.

» Recent theories suggested that
Imaging below the diffraction limit
using passive elements can be
realized by acoustic superlenses or
magnifying hyperlenses. These

« Zhanga, Liu: Negative could markedly enhance the
refraction of acoustic capabilities in underwater sonar
waves in two-dimensional sensing, medical ultrasound imaging
phononic crystals, and non-destructive materials
Applied Physics Letters, testing.

2004. « Li et al, Experimental demonstration

of an acoustic magnifying hyperlens, 44
Nature 2009
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Array Processing Implications

« Spatial inhomogeneities must be taken into
account by array processing algorithms
— The essence of matched field processing

e \Waves propagating in an inhomogenous
medium rarely travel in a straight line

— Makes array processing/beamforming much harder

» Refraction can lead to multipath

— Can be modeled as a low-pass filter, e.g. loss of high
frequencies
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Diffraction

* Ray theory: Geometrical model of optics
* High-frequency — small wavelength model

 Diffraction:
— Wavelength comparable to structure size
— Edges of shadows are not perfectly sharp

— Can hear around corners

 In this course: mainly consequences of
diffraction
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Diffraction
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« Geometric acoustic is OK for dimensions > 1 wavelength
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Huygens’ principle

o Christian Huygens, NL, 1629-1695

e Each point on a travelling wavefront can be
considered as a secondary source of
spherical radiation

* Also a model for an oscillating piston =
acoustic source

=" = =

o

Figure 2.13 A wave is shown impinging on a hole in a planar scrcen, The Rayleigh-Sommerfeld
diffraction formula tells us what the wavefield at the point ¥ is in terms of the wavefield at the
aperture,
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Mathematical formulation of diffraction

Augustin Jean Fresnel (F) 1788 — 1827
Gustav Robert Kirchhoff (D) 1824 — 1887

Lord Rayleigh, John William Strutt (GB) 1842
— 1919, Nobel prize physics, 1904.

Arnold Johannes Wilhelm Sommerfeld (D)
1868 — 1951

Joseph von Fraunhofer (D) 1787 - 1826
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Diffraction: deviation from
geometrical model

* Rayleigh-Sommerfeld diffraction formula from
a hole with aperture A:

1 'k
s(T) = —// s(?h)exp{] i CosOdA
IA A T

— Wave at x is a superposition of fields from the hole, due
to linearity of wave equation

— Weighted by a spherical spreading function exp{jkr}/r
— Also weighted by 1/A
— Obliquity factor cos6

— Phase shift of n/2 due to 1/j /ih
/
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Two approximations

* Fresnel, nearfield, (but not quite near)
 Fraunhofer, farfield

e Leads to

— Important estimates for nearfield — farfield transition
distance

— Fourier relationship between aperture excitation and field
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DZ/A=113 mm

Olympus-Panametrics
A303S
(in our lab)

Simulation:
http://www.ifi.uio.no/
~ultrasim
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Fresnel approximation
s(T) = %/As(?h)expgkr} cos0dA

e CcOS O~ 1, r=dforamplitude

* Phase:
— spherical surfaces =~ quadratic
— parabolic approximation
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Fresnel derivation

« Point in the hole (z, ¢, 0), in observation plane (x,y,z=d)
. Distance: r = [(z —3)2+ (y — §)% + d2]1/2
L @ =82+ (-9
r=d[1l + y7, ™

« Approximate (1+x)¥2=~1+x/2, i.e. small x/D < small angles
(z —8)? + (y — §)?
2d

» Use the above expression for the phase and rad for the
amplitude in Rayleigh-Sommerfeld integral

r~d-+
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Fresnel approximation

oo, ) = Cplikd} / /A o(&.5) exp (1FLGE 7)%+ (y — @7)2]} i3 di

jAd 2d
* Nearfield approximation & within ~15° of z-axis
» Also called paraxial approximation
« 2D convolution between field in hole and h(x,y):
exp{jkd} jk(z* +y?)
h(x,y) = ex
(z,y) By P{——

e This is a quadratic phase function = the phase shift that
a secondary wave encounters during propagation
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Fraunhofer approximation

 Expand phase term of Fresnel approximation

exp{jkd} [ [ G jk[(z — )2 4+ (y — §)?] | didg

2w I P (%, ) exp {? 5
e and neglect quadratic phase term variation
over hole

(z—2)°+(y—7)° = x2+y2—2xﬁf—2y@'% z?4y? 2272y

 If D = max linear dimension of hole, this is
equivalent to assuming (d=dist. from source):
~2 2 2
- (D/2) D

2\ /2 d =+ Fresnel limit
2d — 2d <<A2=> >>4>\
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Fraunhofer approximation

s(x,y) = nd

» Far-field approximation: valid far away from
hole

e S(X,y) = 2D Fourier transform of field in hole
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exp{jkd} exp{Jk(fc +y2)}// 5(5.9) exp{Jk(:c:c-l—yy)}d ai
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Fourier transform relationship

* Very important result

* Link between the physics and the signal
processing!

« Basis for simplified expressions like angular
resolution =~ A/D etc

« Small hole leads to wide beam and vice versa
just like a short time-function has a wide
spectrum
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Nearfield-farfield limit

Not a clear transition, several limits are used, In
Increasing size:

d- = D%/4) : Fresnel limit

d = nt r?/A = n/4 - D?/)\ : Diffraction limit

d = D4\ : max path length difference A/8
ds = 2D?/\ : Rayleigh dist: A path = 1/16

Proportional to D4/A, multiplied by 0.25, 0.79,
1,or2
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DZ/A=113 mm

Olympus-Panametrics
A303S
(in our lab)

Simulation:
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Array Processing Implications

 Diffraction means that opague objects located
between the source and the array can induce
complicated wavefields
— Scattering theory:
» Acoustics: Schools of fish
» Electromagnetics: rain drops
» Complicated, but important to understand
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Norsk terminolog!

« Bglgeligningen

» Planbglger, sfeeriske bglger

* Propagerende bglger, bglgetall
 Sinking/sakking: &

* Dispersjon

« Attenuasjon eller demping

* Refraksjon

 |kke-linearitet

» Diffraksjon; neerfelt, fiernfelt

« Gruppeantenne ( = array)
Kilde: Bl.a. J. M. Hovem: ~"Marin akustikk", NTNU, 1999
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