
 INF5430

 Spear & Tumbush
SystemVerilog for Verification

Chapter 7.1-4

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

Chapter 7 Threads and Interprocess Comm

2

•The testbench has many threads running in parallel

Driver MonitorAssertions

DUT

Agent CheckerScoreboard

Generator
Environment

•Communication between and control of these threads is through
•Standard Verilog events, event control, and wait statements
•SystemVerilog mailboxes and semaphores

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.1 Working with Threads

3

Verilog 2001 has only fork/join to control thread execution

fork

join

initial begin

fork

begin

 ...thread 1...

end

begin

...thread 2...

end

begin

...thread 3...

end

join

end

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.1.1 Using fork..join and begin..end

4

initial begin

 $display("@%0t: start fork...join example", $time);

 #10 $display("@%0t: sequential after #10", $time);

 fork

 $display("@%0t: parallel start", $time);

 #50 $display("@%0t: parallel after #50", $time);

 #10 $display("@%0t: parallel after #10", $time);

 begin

 #30 $display("@%0t: sequential after #30", $time);

 #10 $display("@%0t: sequential after #10", $time);

 end

 join

 $display("@%0t: after join", $time);

 #80 $display("@%0t: finish after #80", $time);

end

Order Time

 0

 10

 10

 60

 20

 40
 50

 60
 140

 1

 2

 3

 7

 4

 5
 6

 8
 9

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.1.2 Spawning Threads w/ fork..join_none

5

SystemVerlog has added fork....join_none to control thread execution

initial begin

fork

begin

 ...thread 1...

end

begin

...thread 2...

end

begin

...thread 3...

end

join_none

end

fork

join_none

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.1.2 Spawning Threads w/ fork..join_none

6

 0

 10

 10
 60

 20

 40
 50

 10
 90

 1

 2

 8

 5

 6
 7

 9

initial begin

 $display("@%0t: start fork...join example", $time);

 #10 $display("@%0t: sequential after #10", $time);

 fork

 $display("@%0t: parallel start", $time);

 #50 $display("@%0t: parallel after #50", $time);

 #10 $display("@%0t: parallel after #10", $time);

 begin

 #30 $display("@%0t: sequential after #30", $time);

 #10 $display("@%0t: sequential after #10", $time);

 end

 join_none

 $display("@%0t: after join_none", $time);

 #80 $display("@%0t: finish after #80", $time);

end

Order Time

 3 or 4

 3 or 4

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.1.3 Spawning Threads w/ fork..join_any

7

SystemVerlog has added fork....join_any to control thread execution

initial begin

fork

begin

 ...thread 1...

end

begin

...thread 2...

end

begin

...thread 3...

end

join_any

end

fork

join_any

initial begin

 $display("@%0t: start fork...join example", $time);

 #10 $display("@%0t: sequential after #10", $time);

 fork

 $display("@%0t: parallel start", $time);

 #50 $display("@%0t: parallel after #50", $time);

 #10 $display("@%0t: parallel after #10", $time);

 begin

 #30 $display("@%0t: sequential after #30", $time);

 #10 $display("@%0t: sequential after #10", $time);

 end

 join_any

 $display("@%0t: after join_any", $time);

 #80 $display("@%0t: finish after #80", $time);

end

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.1.3 Spawning Threads w/ fork..join_any

8

Order Time

 0

 10

 10

 60

 20

 40
 50

 10
 90

 1

 2

 3

 8

 5

 6
 7

 4
 9

class Gen_drive;

 task run(input int n);

 Packet p;

 fork

 repeat (n) begin

 p = new();

 `SV_RAND_CHECK(p.randomize());

 transmit(p); //Transmit the object. Defined elsewhere.

 end

 join_none //Use fork … join_none so run() does not block.

 endtask

endclass

Gen_drive gen;

initial begin

gen = new();

gen.run(10); // Tell run to create 10 new transactions.
// Start the checker, monitor, and other threads

end
Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.1.4 Creating Threads in a Class

9

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.1.6 Automatic Variables in Threads

10

program automatic test;

 initial begin

 for (int j=0; j<3; j++) begin

 fork $display(j); join_none

 end

 end

endprogram

Variables shared by threads should be declared as automatic

3

3

3

program automatic test;

 initial begin

 for (int j=0; j<3; j++) begin

 automatic int k = j;

 fork $display(k); join_none

 end

 end

endprogram

2

1

0

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.1.7 Waiting for all Spawned Threads

11

•When all initial blocks are done, the simulator exits

initial begin

 fork

 transmit(1);

 transmit(2);

 transmit(3);

 join_none

 // Spawn monitor, checker, etc.

 $display("Done at time %t", $time);

end

task transmit(int index);

 #10ns;

 $display("index = %0d", index);

endtask

wait fork;

•Use the wait fork construct to wait for all threads to complete

Done at time 0

index = 1
index = 2
index = 3
Done at time 10

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.2 Disabling Threads

12

initial begin

 wait_for_response(dead_port);

end

To keep a wait from hanging your testbench

To disable unneeded threads

task get_first(output int adr);

fork

wait_device(1, adr);

wait_device(7, adr);

wait_device(13, adr);

join_any

endtask

•How?
•disable

•disable fork

•Why?

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.2.1 Disabling a Single Thread

13

task check_trans(Transaction tr);

 fork

 begin

 fork : timeout_block

 begin

 wait (bus.cb.data == tr.data);

 $display("@%0t: data match %d", $time, tr.data);

 end

 #TIME_OUT $display("@%0t: Error: timeout", $time);

 join_any

 disable timeout_block;

 end

 join_none

endtask

“Disable shall end all processes executing a particular block,
whether the processes were forked by the calling thread or not”
•Disable uses labels to determine which fork to disable

Thread 1
Thread 2

Thread 3

Thread 4

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.2.2 Disabling Multiple Threads

14

initial begin

check_trans(tr0);

// Create a thread to limit scope of disable

fork

begin

check_trans(tr1);

fork

check_trans(tr2);

join

#(TIME_OUT/10) disable fork;

end

join

end

“disable fork shall end only the processes that were spawned
by the calling thread”

Thread 0

Thread 2

Thread 3

Thread 1

Thread 4

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.2.2 Disabling Multiple Threads (cont)

15

task get_first(output int addr);

 fork

 wait_device(1, addr);

 wait_device(7, addr);

 wait_device(13, addr);

 join_any

 disable fork;

endtask

Thread 0 Thread 1

Thread 2

Thread 3

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.3 Interprocess Communication (IPC)

16

•The testbench needs to control:
•Threads waiting for each other
•Threads competing for a resource
•Exchange of data between objects

•Control is accomplished through
•Events
•Semaphores
•Mailboxes

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.4 Events

17

•Verilog 2001 had primitive event synchronization
•Declare variables as type event
•Trigger events with -> operator
•Wait for events with @ operator

•SystemVerilog enhances Verilog 2001 events
•An event is now a handle to a synchronization object
•The triggered() method checked if an event has triggered

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.4.1 Blocking on the edge of an event

18

With Verilog 2001 a thread can miss an event and stall

event e1, e2;

initial begin

 $display("@%0t: 1: before trigger", $time);

 -> e1;

 @e2;

 $display("@%0t: 1: after trigger", $time);

end

initial begin

 $display("@%0t: 2: before trigger", $time);

 -> e2;

 @e1;

 $display("@%0t: 2: after trigger", $time);

end

@0: 1: before trigger

@0: 2: before trigger

@0: 1: after trigger

@0: 2: before trigger

@0: 1: before trigger

@0: 2: after trigger

OR

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.4.2 Waiting for an event trigger

19

SystemVerilog introduces the triggered() method

event e1, e2;

initial begin

 $display("@%0t: 1: before trigger", $time);

 -> e1;

 wait (e2.triggered());

 $display("@%0t: 1: after trigger", $time);

end

initial begin

 $display("@%0t: 2: before trigger", $time);

 -> e2;

 wait (e1.triggered());

 $display("@%0t: 2: after trigger", $time);

end

@0: 1: before trigger

@0: 2: before trigger

@0: 2: after trigger

@0: 1: after trigger

1

3

2

4

5

6
7

8

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.4.3 Using Events in a Loop

20

Since triggered() looks for events in the current time step if
time does not advance triggered()is always satisfied.

event handshake;

initial begin

 forever begin

 wait(handshake.triggered());

 $display("%t: Received next event", $time);

 process_in_zero_time();

 end

end

initial begin

 #10ns;

 -> handshake;

 #10ns;

end

 task process_in_zero_time();

 endtask

10: Received next event

10: Received next event

10: Received next event

10: Received next event

10: Received next event

10: Received next event

10: Received next event

10: Received next event

10: Received next event

10: Received next event

10: Received next event

10: Received next event

10: Received next event

10: Received next event

10: Received next event

10: Received next event

@handshake;

package my_package;

 class Generator;

 event done;

 function new (event done);

 this.done = done;

 endfunction

 task run();

 fork

 begin

 #10ns;

 -> done;

 end

 join_none

 endtask

 endclass

endpackage

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.4.4 Passing Events

21

With SystemVerilog an event is now a handle to a synchronization
object so it can be passed to tasks and functions.

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.4.4 Passing Events (cont)

22

Usage of class Generator

program automatic test;

 import my_package::*;

 event gen_done;

 Generator gen;

 initial begin

 gen = new(gen_done);

 gen.run();

 $display("%0t: Waiting on gen_done", $time);

 wait(gen_done.triggered());

 $display("%0t: Done waiting on gen_done", $time);

 end

endprogram

0: Waiting on gen_done

10: Done waiting on gen_done

synchronization
object

gen_done

gen.done

wait(gen.done.triggered()); OR:

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.4.5 Waiting for multiple Events

23

How to wait for multiple threads of class Generator to finish?

event done[N_GENERATORS];

initial begin

foreach (gen[i]) begin

gen[i] = new(done[i]);

gen[i].run();

end

foreach (gen[i])

fork

automatic int k = i;

wait (done[k].triggered());

join_none

wait fork;

end

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.5 Semaphores

24

•Semaphores allow the testbench to control access to a resource
•Think of a semaphore as a bucket containing 1 or more keys
•Access to a resource requires a key

•A thread that requests an unavailable key blocks
•Multiple blocking threads are queued in FIFO order

Chapter 7 Copyright 2011 G. Tumbush, C. Spear v1.5

7.6 Mailboxes

25

•Mailboxes are used to pass information between 2 threads.
•Allows threads to operate autonomously and asynchronously

•Think of a mailbox as a fifo with a source and sink

•Source puts data in the mailbox
•Sink takes data out of the mailbox.
•Now the generator does not have to know anything about the
driver, and visa versa

•Mailboxes can be sized or unlimited
•If a source tries to put into a full mailbox it is blocked
•If a sink tries to get from an empty mailbox it is blocked

Source Sink

