INF5430

Introduction to Verification
with
SystemVerilog

References Verilog and SystemVerilog Design

Sutherland, Davidmann & Flake — SystemVeriIog
SystemVerilog for Design, 2" Edition for Design

A Guide fo Using
SystemVerilog for Hardware
Design and Modeling

J. BHASKER

Bhasker — A Verilog HDL

Primer, 3™ Edition A=A -
Stuart Sutherland |
A Simon Davidmann Sl
Peter Flake
VERILOG HDL
PRIMER

THIRD EDITION

References SystemVerilog Testbenches

Spear and Tumbush , SystemVerilog for
Verification: A Guide to Learning the
Testbench Language Features, 3™ Edition

©IEEE
I E E EI IEEE Stan dard fOr IEEE Standard for SystemVerilog—
Unified I_-I:ard\{vare Design, Specification,
System Verllog —_— Un LfIEd and Verification Language
Hardware Design,
Specification, and

Verification Language, 2009

Chrss Spear - Grag Tumbush

SystemVerilog

for Verification

AGnide to E=2aming
the Testhench Language Faaturps

Ihied Eaition

http://www.amazon.com/gp/reader/1461407141/ref=sib_dp_pt

References SystemVerilog UVM

K. A. Mead & S. Rosenberg — APractcal Guide to Adopting
. . . the Universal Verification Methodology (UVM)

A Practical Guide to Adopting the Second ion

Universal Verification Methodology

(UVM), 279 Edition

Kathleen A Meade

Ray Salemi — —
The UVM Primer LQ/,M

Copyrighted Material

The UVM Primer

An Introduction to the
Universal Verification Methodology

Ray Salemi

Reference SystemVerilog Assertions

Ashok B. Mehta

Ashok B. Mehta

SystemVerilog
Assertions

System\Verilog Assertions and
Functional Coverage;

Guide to Language, and Functional
Methodology and Coverage

Applications Guide to Lanquage, Methodology and
) . Applications

Why Verify?

The later in the product cycle a bug is found the more costly it is.

! |
/
/
Cost /
of Bug / 4
e
~
~
—
—
—
_— —
Block Subsystem System Post Field >
Level Level Level Silicon

Product Cycle

CLE

1.3 Basic Testbench Functionality

Generate stimulus
Apply stimulus to DUT
Capture the responses
Check for correctness
Measure progress

1.4 Directed Testing

Most (all) probably specified directed testing in their test plan

* Steady progress
e Little up-front infrastructure development
* Small design changes could mean massive test changes

A
100%

Test Plan
Completion

Time

1.5 Methodology Basics

Our verification environments will use the following principles

1. Constrained random stimulus
2. Functional coverage
3. Layered testbench using transactors
4. Common testbench for all tests
5. Test-specific code kept separate from testbench
A
100% J_ —
I_Random
Testing
Test Plan Directed
Completion Testing

Time

1.7 What should you randomize?

Much more than data

Device configuration
Environment configuration
Protocol exceptions

Errors and violations
Delays

Test order

Seed for the random test

I S U

1.8 Functional Coverage

How do you know your random testbench is doing anything
useful?

Functional coverage measures how many items in your test
plan have been tested.

For ALU:

1. Have all opcodes been exercised?

2. Have operands taken values of max pos, max neg, 0?
3. Have all permutation of operands been exercised?

Functional coverage can be collected manually or by writing
SystemVerilog coverage statements.

1.9 Testbench Components

*Testbench wraps around the Design Under Test
*Generate stimulus
eCapture response
*Check for correctness
*Measure progress through coverage numbers

*Features of an effective testbench

*Reusable and easy to modify for different DUTs <- Object oriented

*Testbench should be layered to enable reuse

Flat testbenches are hard to expand.

*Separate code into smaller pieces that can be developed separately and
combine common actions together

*Catches bugs and achieves coverage quickly <- Randomize!

Testbench

Design
o Under
Test

inputs outputs

1.10.5 Test Layer and Functional Coverage

* Test block determines: * Functional Coverage
* What scenarios to run » Measures progress of tests
* Timing of scenarios * Changes throughout project
 Random constraints
Test
* Environment
Scenario | | Generator >
_____ ___$_________________________ o
Functional Agent — Scoreboard — Checker | [=
_____ R >
. N el R
Driver | | Assertions Monitor o
Command | ©
R E I &
Csignal | [-1 | [

1.13 Maximum Code Reuse

 Put your effort into your testbench not into your tests.
* Write 100’s or 1000’s of directed tests or far fewer
random tests.

e Use directed test to cover missed functional coverage

1.14 Testbench Performance

* Directed tests run quicker than random tests

* Random testing explores a wide range of the state space

e Simulation time is cheap

* Your time is not

* Avoid visually verified tests; i.e. create a self checking testbench
* Test maintenance can be a huge effort

Simulation Tool
Mentor Graphics Questa Prime

QuestaSim 6.6b

File Edit Miew Compile Simulate Add MQDIE Layout Window

N-SE2& & BB o Ol g % || el i
‘ Layout. HoDesign |
Columplayout ||’-‘|11|:.:.1umr-.5 ﬁ
M Likrary S ﬂ ﬂ E
¥ | Hame | Type |Path |
+-Jl, work Library work

QuestaSim 6,6k May 21 2010 Linux 2,6,27,.45-0,1-default

A¢ 0 Copyright 1991-2010 Mentor Graphics Corporation
A All Rights Reserwed,

A THIS WORE COMTAIHS TRADE SECRET AMD

FEOFEIETARY IMFORMATION MWHICH IS THE FROFPERTY
J¢ OF MEWTOR GREAFHICS CORPORATION OF ITS LICEMSORS
A4 AMD IS SUBJECT TO LICEMSE TERMS,

reading modelsim, ini
Loading project HWLO
reading modelsim, ini

S 3k dF 3k 3k 3E 3 3 3 3 SR S S
T
T

HuestaSim> EI

| |{HD Dezign Loaded?: Context: -

Chapter 1 Copyright 2012 G. Tumbush, C. Spear v1.2

16

Questa Verification IP 10.4 Protocol support

Large Library of Protocols and Interfaces Continues to Expand

AMBA

— ACE

— ACE-lite

— AXI4

— AXI3

— AHB

— APB

— AMBA 5 CHI

— LPDDR4
— LPDDR3
— LPDDR2
— DDR4
— DDR3
—_ DDR2
—_ DFI 3.1
— Wide IO 2
Ethernet
— 100G
— 50G
—_ 40G
— 25G
— 10G
— 1G
— 100M
—_ 10M

SB Mentor Forum 2015

Ethernet (Continued) =

— PTP

— MDIO
— EEE

— MII

— RMII

— GMII

— TBI

— RTBI

— SGMII
— RGMII
— QSGMII
— BASE-X
— BASE-T
— BASE-R
— BASE-W
— CAUI

— XGMII
— XAUI

— XLAUI
— RXAUI
— XSBI

— XLGMII
— CGMII
— HiGig2
— FEC

— Auto-Neg

HDMI

HDMI 2.0 —
HDMI 1.4 —
HDCP 1.4 —

MPHY 3.0 —
LLI 2.0 —
DSI1.1 —
CsI-2 1.1, CSI-3 —
DigRFv4 1.2 =
HSI 1.0.1 —
Unipro 1.6 —
UFS 2.0
= Serial

PCle 4.0 —
PCle 3.0 —
PCIe 2.0 =
PCle 1.1 —
PIPE _
PIE-8 =
SR-IOV

MR-IOV

NVMe, AHCI

USB 3.1
USB 3.0 + OT{
USB PD
PIPE

XHCI

ssIC b
USB 2.0 + OTGY
UTMI+ |
UTMI
ULPI
oHCI
eHCI

SmartCard
SPI — TI, Moto
SPI1 4.2
UART

12C 5.0

I12S — Philips,
JTAG

© 2014 Mentor Graphics Corp. Company Confidential
www. mentor.com y

