
 INF5430

 Introduction to Verification
with

SystemVerilog

References Verilog and SystemVerilog Design

2

Sutherland, Davidmann & Flake —
SystemVerilog for Design, 2nd Edition

Bhasker — A Verilog HDL
Primer, 3rd Edition

References SystemVerilog Testbenches

3

Spear and Tumbush , SystemVerilog for
Verification: A Guide to Learning the
Testbench Language Features, 3rd Edition

IEEE, IEEE Standard for
SystemVerilog— Unified
Hardware Design,
Specification, and
Verification Language, 2009

http://www.amazon.com/gp/reader/1461407141/ref=sib_dp_pt

References SystemVerilog UVM

4

Ray Salemi —
The UVM Primer

K. A. Mead & S. Rosenberg —
A Practical Guide to Adopting the
Universal Verification Methodology
(UVM), 2nd Edition

Reference SystemVerilog Assertions

5

Ashok B. Mehta

SystemVerilog Assertions and
Functional Coverage;

Guide to Language,
Methodology and
Applications.

Chapter 1 Copyright 2012 G. Tumbush, C. Spear v1.2

Why Verify?

6

The later in the product cycle a bug is found the more costly it is.

Product Cycle

Block

Level
Subsystem

Level

System

Level

Post

Silicon

Cost

of Bug

Field

Chapter 1 Copyright 2012 G. Tumbush, C. Spear v1.2

1.3 Basic Testbench Functionality

7

1. Generate stimulus
2. Apply stimulus to DUT
3. Capture the responses
4. Check for correctness
5. Measure progress

Chapter 1 Copyright 2012 G. Tumbush, C. Spear v1.2

1.4 Directed Testing

8

Most (all) probably specified directed testing in their test plan
• Steady progress
• Little up-front infrastructure development
• Small design changes could mean massive test changes

Test Plan

Completion

100%

Time

Chapter 1 Copyright 2012 G. Tumbush, C. Spear v1.2

1.5 Methodology Basics

9

Our verification environments will use the following principles
1. Constrained random stimulus
2. Functional coverage
3. Layered testbench using transactors
4. Common testbench for all tests
5. Test-specific code kept separate from testbench

Test Plan

Completion

100%

Time

Directed

Testing

Random

Testing

Chapter 1 Copyright 2012 G. Tumbush, C. Spear v1.2

1.7 What should you randomize?

10

Much more than data
1. Device configuration
2. Environment configuration
3. Protocol exceptions
4. Errors and violations
5. Delays
6. Test order
7. Seed for the random test

Chapter 1 Copyright 2012 G. Tumbush, C. Spear v1.2

1.8 Functional Coverage

11

How do you know your random testbench is doing anything
useful?

Functional coverage measures how many items in your test
plan have been tested.

For ALU:
1. Have all opcodes been exercised?
2. Have operands taken values of max pos, max neg, 0?
3. Have all permutation of operands been exercised?

Functional coverage can be collected manually or by writing
SystemVerilog coverage statements.

1.9 Testbench Components

12

•Testbench wraps around the Design Under Test
•Generate stimulus
•Capture response
•Check for correctness
•Measure progress through coverage numbers

•Features of an effective testbench
•Reusable and easy to modify for different DUTs <- Object oriented
•Testbench should be layered to enable reuse

•Flat testbenches are hard to expand.
•Separate code into smaller pieces that can be developed separately and
combine common actions together

•Catches bugs and achieves coverage quickly <- Randomize!

 Chapter 1 Copyright 2012 G. Tumbush, C. Spear v1.2

1.10.5 Test Layer and Functional Coverage

13 Chapter 1 Copyright 2012 G. Tumbush, C. Spear v1.2

• Test block determines:
• What scenarios to run
• Timing of scenarios
• Random constraints

Driver MonitorAssertions

DUT

Command

Signal

Agent CheckerScoreboardFunctional

Scenario Generator
Environment

Test

F
u

n
c

tio
n

a
l C

o
v

e
ra

g
e

• Functional Coverage
• Measures progress of tests
• Changes throughout project

1.13 Maximum Code Reuse

14 Chapter 1 Copyright 2012 G. Tumbush, C. Spear v1.2

• Put your effort into your testbench not into your tests.
• Write 100’s or 1000’s of directed tests or far fewer
random tests.
• Use directed test to cover missed functional coverage

1.14 Testbench Performance

15 Chapter 1 Copyright 2012 G. Tumbush, C. Spear v1.2

• Directed tests run quicker than random tests
• Random testing explores a wide range of the state space
• Simulation time is cheap
• Your time is not
• Avoid visually verified tests; i.e. create a self checking testbench
• Test maintenance can be a huge effort

Chapter 1 Copyright 2012 G. Tumbush, C. Spear v1.2

Simulation Tool

16

Mentor Graphics Questa Prime

17 Chapter 1 Copyright 2012 G. Tumbush, C. Spear v1.2

