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Why Verify?

The later in the product cycle a bug is found the more costly it is.
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1.3 Basic Testbench Functionality

Generate stimulus
Apply stimulus to DUT
Capture the responses
Check for correctness
Measure progress



1.4 Directed Testing

Most (all) probably specified directed testing in their test plan

* Steady progress
e Little up-front infrastructure development
* Small design changes could mean massive test changes
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1.5 Methodology Basics

Our verification environments will use the following principles

1. Constrained random stimulus
2. Functional coverage
3. Layered testbench using transactors
4. Common testbench for all tests
5. Test-specific code kept separate from testbench
A
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1.7 What should you randomize?

Much more than data

Device configuration
Environment configuration
Protocol exceptions

Errors and violations
Delays

Test order

Seed for the random test
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1.8 Functional Coverage

How do you know your random testbench is doing anything
useful?

Functional coverage measures how many items in your test
plan have been tested.

For ALU:

1. Have all opcodes been exercised?

2. Have operands taken values of max pos, max neg, 0?
3. Have all permutation of operands been exercised?

Functional coverage can be collected manually or by writing
SystemVerilog coverage statements.



1.9 Testbench Components

*Testbench wraps around the Design Under Test
*Generate stimulus
eCapture response
*Check for correctness
*Measure progress through coverage numbers

*Features of an effective testbench

*Reusable and easy to modify for different DUTs <- Object oriented

*Testbench should be layered to enable reuse

Flat testbenches are hard to expand.

*Separate code into smaller pieces that can be developed separately and
combine common actions together

*Catches bugs and achieves coverage quickly <- Randomize!

Testbench

Design
o Under
Test

inputs outputs




1.10.5 Test Layer and Functional Coverage

* Test block determines: * Functional Coverage
* What scenarios to run » Measures progress of tests
* Timing of scenarios * Changes throughout project
 Random constraints
Test
* Environment
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1.13 Maximum Code Reuse

 Put your effort into your testbench not into your tests.
* Write 100’s or 1000’s of directed tests or far fewer
random tests.

e Use directed test to cover missed functional coverage



1.14 Testbench Performance

* Directed tests run quicker than random tests

* Random testing explores a wide range of the state space

e Simulation time is cheap

* Your time is not

* Avoid visually verified tests; i.e. create a self checking testbench
* Test maintenance can be a huge effort
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Questa Verification IP 10.4 Protocol support

Large Library of Protocols and Interfaces Continues to Expand

AMBA

— ACE

—  ACE-lite

— AXI4

— AXI3

— AHB

— APB

— AMBA 5 CHI

— LPDDR4
— LPDDR3
— LPDDR2
— DDR4
— DDR3
—_ DDR2
—_ DFI 3.1
— Wide IO 2
Ethernet
— 100G
— 50G
—_ 40G
— 25G
— 10G
— 1G
— 100M
—_ 10M

SB Mentor Forum 2015

Ethernet (Continued) =

— PTP

— MDIO
— EEE

— MII

— RMII

— GMII

— TBI

— RTBI

—  SGMII
— RGMII
—  QSGMII
—  BASE-X
—  BASE-T
—  BASE-R
—  BASE-W
— CAUI

—  XGMII
—  XAUI

—  XLAUI
—  RXAUI
—  XSBI

—  XLGMII
— CGMII
— HiGig2
— FEC

—  Auto-Neg

HDMI

HDMI 2.0 —
HDMI 1.4 —
HDCP 1.4 —

MPHY 3.0 —
LLI 2.0 —
DSI1.1 —
CsI-2 1.1, CSI-3 —
DigRFv4 1.2 =
HSI 1.0.1 —
Unipro 1.6 —
UFS 2.0
= Serial

PCle 4.0 —
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PIPE _
PIE-8 =
SR-IOV

MR-IOV

NVMe, AHCI

USB 3.1
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USB PD
PIPE

XHCI
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USB 2.0 + OTGY
UTMI+ |
UTMI
ULPI
oHCI
eHCI

SmartCard
SPI — TI, Moto
SPI1 4.2
UART

12C 5.0

I12S — Philips,
JTAG
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