
 INF5430

 SystemVerilog for Verification

 Chapter 6.1-12

Randomization

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

Chapter 6: Randomization

2

•Directed testing:
•Checks only anticipated bugs
•Scales poorly as requirements change
•Little upfront work
•Linear progress

•Random testing:
•Checks unanticipated bugs
•Scales well as requirements change
•More upfront work
•Better than linear progress

Test Plan

Completion

100%

Time

Directed

Testing

Random

Testing

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.1 Introduction

3

•A testbench based on randomization is a shotgun
•The features you are trying to test is the target

•How to cover untested areas?

•More random testing with tighter constraints
•Directed testing

•When is testing done?
•Functional coverage
•Code coverage

Features Features Features Features Features

Shotgun Verification or The Homer Simpson Guide to Verification, Peet James

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.2 What to randomize?

4

Much more than data
1. Device configuration
2. Environment configuration
3. Primary input data
4. Encapsulated input data
5. Protocol exceptions
6. Errors and violations
7. Delays
8. Test order
9. Seed for the random test

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.3 Randomization in SystemVerilog

5

•Specified within a class along with constraints
•Variable declared with rand keyword distributes values uniformly

•Variable declared with randc keyword distributes values cyclically
•No repeats within an iteration

•Constraints specified with constraint keyword

•New values selected when randomize() function called
•Returns 1 if constraints can be solved, 0 otherwise

3, 2, 0, 0, 3, 1,

initial permutation 0,3,2,1

next permutation 0,3,2,1

next permutation 2,0,1,3

rand bit [1:0] y;

randc bit [1:0] y;

constraint y_c {y >=1;y<3;}

<handle>.randomize();

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.3.1 Simple class with Random Variables

6

class Packet;

rand bit [31:0] src, dst, data[8];

randc bit [7:0] kind;

constraint c {src > 10; src < 15;}

endclass

Packet p;

initial begin

p=new();

if (!p.randomize())

$finish;

transmit(p);

end

Constraint expressions

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.3.2 Checking the result from randomization

7

• Always check the result of a call to randomize()

• Text uses a macro to check the results from randomization

 ̀define SV_RAND_CHECK(r) \
 do begin \

 if (!(r)) begin \

 $display("%s:%0d: Randomization failed \"%s\"", \

 `__FILE__, `__LINE__, `"r`"); \

 $finish; \

 end \

 end while (0)

test.sv:13: Randomization failed “p.randomize()"

`SV_RAND_CHECK(p.randomize());

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.3.3 The constraint solver

8

•Solves constraint expressions
•Same seed results in the same random values
•Use different seeds in each nightly regression run.
•Constraints may take a long time to solve
•Solver is specific to each simulator vendor/release.

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.3.4 What can be randomized?

9

•2-state variables
•4-state variables except no X’s or Z’s will be created.
•Integers
•Bit vectors
•Arrays
•Time
•Real, string
•Handle in constraint

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.4.2 Simple Expressions

10

•Each constraint expression should contain only 1 relational
operator

• <, <=, ==, >,=>

• Constraint bad is broken down into multiple binary relational
expressions from left to right. lo and med are randomized.
• lo < med is evaluated, but not constrained. Results in 0 or 1.
• hi > 0 or 1 constraint is then evaluated.
• Not what you want!

• Correct constraint:

class Order_bad;

rand bit [7:0] lo, med, hi;

constraint bad {lo < med < hi;}

endclass

constraint good{lo < med;

 med < hi;}

lo=20, med=224, hi=164

lo=114, med=39, hi=189

lo=186, med=148, hi=161

lo=214, med=223, hi=201

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.4.3 Equivalence Expressions

11

•Suppose you want to constrain a value to be equal to an expression

• len must be declared as random
•Using = is a syntax error

class order;

 rand bit [7:0] addr_mode, size, len;

 constraint order_c {len == addr_mode*4 + size;}

 endclass

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.4.4 Weighted Distributions

12

•Weighted distributions cause a non-uniform distribution
•Weights do not have to add up to 100% and can be variables
•Cannot be used with randc
•What would this be used for?

• For a CPU want less or more of a particular opcode
• For a datapath want max neg, 0, and max pos more often

constraint <constraint name> {<variable name> dist {<distribution>}};

 := operator indicates the weight is the same for all values
 :/ operator indicates the weight is distributed across all values

constraint c_dist {

 src dist {0:=40, [1:3]:=60};

 dst dist {0:/40, [1:3]:/60};

 }

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.4.4 Weighted Distributions := operator

13

 := operator indicates the weight is the same for all values

src = 0, weight = 40

src = 1, weight = 60

src = 2, weight = 60

src = 3, weight = 60

/220

/220

/220

/220

=18%

=27%

=27%

=27%

constraint src_dist { src dist {0:=40, [1:3]:=60} ;}

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.4.4 Weighted Distributions :/ operator

14

 :/ operator indicates the weight is distributed across all values

dst = 0, weight = 40

dst = 1, weight = 20

dst = 2, weight = 20

dst = 3, weight = 20

/100

/100

/100

/100

=40%

=20%

=20%

=20%

constraint dst_dist {dst dist {0:/40, [1:3]:/60} ;}

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.4.4 Weighted Distributions (cont.)

15

•Weights can be constants, ranges, or variables.
•Using variables allows the weights to be adjusted on the fly

class BusOp;

typedef enum {BYTE, WORD, LWRD} length_e;

rand length_e len;

bit [31:0] w_byte=1, w_word=3, w_lwrd=5;

constraint c_len {

 len dist {BYTE := w_byte,

 WORD := w_word,

 LWRD := w_lwrd};

}

endclass

constraint address_c {address > 2; address < 5;}

constraint address_range{address inside{[3:4]};}

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.4.5 Set membership and the inside operator

16

•Alternative to {var>value1 ; var<value2} is the inside keyword

•Using the ! operator can exclude ranges

equivalent

constraint c_range {

 !(c inside{[lo:hi]});

}

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.4.6 Using an array in a set

17

•Suppose you want to create multiple equivalence constraints
•For example: f can only equal 1, 2, 3, 5, 8

•Alternate solution is to store the values in an array

•Can specify that values in the array are NOT to be chosen

rand bit [7:0] f;

constraint c_fibonacci {

(f==1) || (f==2) || (f==3) || (f==5) || (f==8));}

rand bit [7:0] f;

bit [31:0] vals[]= ‘{1,2,3,5,8};

constraint c_fibonacci {f inside vals;}

rand bit [7:0] notf;

bit [31:0] vals[]= ‘{1,2,3,5,8};

constraint c_fibonacci {!(notf inside vals);}

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.4.7 Bidirectional Constraints

18

•Constraint blocks are not procedural but declarative.
•All constraints are active at the same time.

Solution r s t

A 6 6 7

B 6 6 8

C 6 6 9

D 7 7 8

E 7 7 9

F 8 8 9

rand bit [15:0] r,s,t;

constraint c_bidir {

 r < t;

 s == r;

 t < 10;

 s > 5;}

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.4.8 Implication Constraints

19

Suppose you want to impose different constraints depending on a var
Solution 1: Solution 2:
constraint mode_c {

if (mode == small)

 len < 10;

else if (mode == large)

 len > 100;

}

constraint mode_c {

(mode == small) -> len < 10;

(mode == large) -> len > 100;

}

equivalent

equivalent

equivalent

{(a==1)->(b==0)};

{if (a==1) b==0;}

{!(a==1) || (b==0);}

{(a==0) || (b==0);}

Solution a b

A 0 0

B 0 1

C 1 0

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.4.9 Equivalence operator

20

•The equivalence operator <-> is bidirectional.
•A<->B is defined as ((A->B) && (B->A))

rand bit d, e;

constraint c { d==1 <-> e==1; }

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.5 Solution Probabilities

21

It’s important to understand how constraints affect the probability of
the solution.

Unconstrained:

class Unconstrained;

 rand bit x;

 rand bit [1:0] y;

endclass

Solution x y Probability

A 0 0 1/8

B 0 1 1/8

C 0 2 1/8

D 0 3 1/8

E 1 0 1/8

F 1 1 1/8

G 1 2 1/8

H 1 3 1/8

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.5.2 Implication

22

class Imp1;

 rand bit x;

 rand bit [1:0] y;

 constraint c_xy {

 (x==0)->y==0;

 }

endclass

Solution x y Probability

A 0 0 1/2

B 0 1 0

C 0 2 0

D 0 3 0

E 1 0 1/8

F 1 1 1/8

G 1 2 1/8

H 1 3 1/8

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.5.3 Implication and bidirectional
constraints

23

class Imp2;

 rand bit x;

 rand bit [1:0] y;

 constraint c_xy {

 y>0;

 (x==0)->y==0;

 }

endclass

Solution x y Probability

A 0 0 0

B 0 1 0

C 0 2 0

D 0 3 0

E 1 0 0

F 1 1 1/3

G 1 2 1/3

H 1 3 1/3

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.5.4 Guiding Distribution with solve/before

24

• Solve before tells the solver to solve for 1 variable before
another.
•The possible solutions does not change, just the probability.

class SolveBefore;

 rand bit x;

 rand bit [1:0] y;

 constraint c_xy {

 (x==0)->y==0;

 solve x before y;

 }

endclass

Solution x y Probability

A 0 0 1/2

B 0 1 0

C 0 2 0

D 0 3 0

E 1 0 1/8

F 1 1 1/8

G 1 2 1/8

H 1 3 1/8

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

solve y before x;

25

class Imp1;

 rand bit x;

 rand bit [1:0] y;

 constraint c_xy {

 (x==0)->y==0;

 solve y before x;

 }

endclass

Solution x y Probability

A 0 0 1/8

B 0 1 0

C 0 2 0

D 0 3 0

E 1 0 1/8

F 1 1 1/4

G 1 2 1/4

H 1 3 1/4

class Packet

rand bit [31:0] length;

constraint c_short {length inside {[1:32]};}

constraint c_long {length inside {[1000:1023]};}

endclass

Packet p:

initial begin

p=new();

p.c_short.constraint_mode(0);

S̀V_RAND_CHECK(p.randomize());

transmit(p);

....

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.6 Controlling Multiple Constraint Blocks

26

...

p.constraint_mode(0);

p.c_short.constraint_mode(1);

S̀V_RAND_CHECK(p.randomize());

transmit(p);

end // initial

Use the constraint_mode() function to turn constraints on/off
<handle>.constraint_mode(<0/1>);

<handle>.<constraint>.constraint_mode(<0/1>);

6.7 Valid Constraints

27

•A suggested technique to creating valid stimulus is to create valid
constraints
•Turn the constraint off to test the system’s response to invalid
stimulus.
•For example, suppose a read-modify-write command is only valid if
the length is a long word.

class Transaction;

typedef enum {BYTE, WORD, LWRD, QWRD} length_e;

typedef enum {READ, WRITE, RMW, INTR} access_e;

rand length_e length;

rand access_e access;

constraint valid_RMW_LWRD {

(access == RMW) -> (length == LWRD);

}

endclass
Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

class Transaction;

rand bit [31:0] addr, data;

constraint c1 {addr inside{[0:100], [1000:2000]};}

endclass

intitial begin

 Transaction t;

 t=new();

 ̀ SV_RAND_CHECK(t.randomize() with {addr >=50; addr <=1500;

 data <10;});

 driveBus(t);

 ̀ SV_RAND_CHECK(t.randomize() with {addr ==2000; data >10;});

 driveBus(t);

end
Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.8 In-line Constraints

28

•In-line constraints create constraints outside of the class.
•Add to existing constraints if they are enabled.
•For example, a single test needs to be written with tighter than
usual address constraints

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.9 pre_randomize/post_randomize

29

•Implicitly called before/after every call to randomize()
•void function

•Cannot consume time.
•Can only call other functions.
• Does not return a value

•Overload to add your functionality
•post_randomize() is good for cleaning up

class Packet;

 rand bit [31:0] length;

 constraint c_length {

 length inside {[1:100]};

 }

endclass

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.11 Constraint Tips and Techniques

30

•Instead of hardcoding constraints use variables with defaults
•Allows the constraint to be modified without modifying the class
•Allows invalid stimulus to be generated

class Packet;

 rand bit [31:0] length;

 int max_length= 100;

 constraint c_length {

 length inside {[1:max_length]};

 }

endclass

initial begin

Packet p1 = new();

p1.max_length = 200;

p1.randomize();

end

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.11.2 Using Nonrandom Values

31

class Packet;

rand bit [7:0] length;

constraint c_length{length > 0;}

..... // Other constraints depending on length

endclass

initial begin

Packet p = new();

S̀V_RAND_CHECK(p.randomize());

p.length.rand_mode(0);

p.length = 42; (or: 0;)

S̀V_RAND_CHECK(p.randomize());

p.rand_mode(0);

end

Create an invalid length zero

Value for length will be
included in constraint solution

•constraint_mode() turns on/off constraints
•rand_mode() makes a variable or every variable in an object non-
random

Make length nonrandom

class Transaction;

 rand bit [31:0] addr, data;

 constraint c1 {addr inside{[0:100], [1000:2000]};}

endclass

Transaction t;

initial begin

 t=new();

 S̀V_RAND_CHECK(t.randomize());

 t.addr = 200;

 S̀V_RAND_CHECK(t.randomize(null));

end

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.11.3 Checking Values using Constraints

32

•If you change the value of random variables how do you know all
your random variables are still valid?
•Use a call to <handle>.randomize(null) to check.

...Randomization failed

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.11.4 Randomizing Individual Variables

33

Can pass variables to randomize() to randomize only a subset of
variables

class Rising;

bit [7:0] low;

rand bit [7:0] med, hi;

constraint up { low < med; med < hi; }

endclass

initial begin

Rising r;

r = new();

`SV_RAND_CHECK(r.randomize());

`SV_RAND_CHECK(r.randomize(med));

`SV_RAND_CHECK(r.randomize(low)); // Surprisingly!!

`SV_RAND_CHECK(r.randomize(low, med));

end

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.11.5 Turn Constraints Off and On

34

•Use many simple constraints instead of 1 complex constraint
•Turn on the constraints needed

class Instruction;

 typedef enum {NOP, HALT, CLR, NOT} opcode_e;

rand opcode_e opcode;

bit [1:0] n_operands;

constraint c_operands{

if (n_operands == 0)

 (opcode == NOP) || (opcode == HALT);

else if (n_operands == 1)

 (opcode == CLR) || (opcode == NOT);

.....

}

endclass

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.11.5 Turn Constraints Off and On (cont.)

35

class Instruction;

typedef enum {NOP, HALT, CLR, NOT} opcode_e;

rand opcode_e opcode;

constraint c_no_operands{

(opcode == NOP) || (opcode == HALT);}

constraint c_one_operand{

(opcode == CLR) || (opcode == NOT);}

.....

}

endclass

initial begin

Instruction instr = new();

instr.constraint_mode(0);

instr.c_no_operands.constraint_mode(1);

`SV_RAND_CHECK(instr.randomize());

end

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.12 Common Randomization Problems

36

•Using a signed variable isn’t an issue if you control the values

•However, a randomized signed variable will produce negative values

•Some valid solutions of {pkt1_len, pkt2_len} are:

for (int i=0;i<=5;i++)

class SignedVars;

rand byte pkt1_len, pk2_len;

constraint total_len {pkt1_len + pk2_len == 64;}

endclass

(32,32)

(2,62)

(-63, 127)

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

6.12.1 Use Signed Values with care

37

•Might be temped to declare pkt1_len, pk2_len as large unsigned

•A valid solution of {pkt1_len, pkt2_len} is

•One solution is to constrain the max values of pkt1_len and pk2_len
•Best solution is to only use values as wide as required

class Vars32;

rand bit [31:0] pkt1_len, pk2_len;

constraint total_len {pkt1_len + pk2_len == 64;}

endclass

class Vars8;

 rand bit [7:0] pkt1_len, pkt2_len;

 constraint total_len {pkt1_len + pkt2_len == 9’d64;}

endclass

(32’h80000040, 32’h80000000) = 32’h40=32’d64

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

Constraint Exercise 1

38

Write the SystemVerilog code for the following items:
1) Create a class Exercise1 containing two variables, 8-bit data
and 4-bit address. Create a constraint block that keeps address to
3 or 4.
2) In an initial block, construct an Exercise1 object and
randomize it. Check the status from randomization.

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

Constraint Exercise 1 solution

39

Write the SystemVerilog code for the following items:
1) Create a class Exercise1 containing two variables, 8-bit data and 4-bit
address. Create a constraint block that keeps address to 3 or 4.
2) In an initial block, construct an Exercise1 object and randomize it. Check
the status from randomization.

class Exercise1;

 rand bit [7:0] data;

 rand bit [3:0] address;

 constraint address_c {

 address > 2;

 address < 5;

 }

endclass

initial begin

 Exercise1 MyExercise1;

 MyExercise1 = new;

 `SV_RAND_CHECK(MyExercise1.randomize());

end

// or

// ((address==3) || (address==4));

// or

// address inside {[3:4]};

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

Constraint Exercise 2

40

Modify the solution for Exercise1 to create a new class
Exercise2 so that:

1. data is always equal to 5
2. Probability of address = 4’d0 is 10%
3. Probability of address being between [1:14] is 80%
4. Probability of address = 4’d15 is 10%

Demonstrate its usage by generating 20 new data and address
values and check for error.

Constraint Exercise 2 solution

41

Modify the solution for Exercise1 to create a new class Exercise2 so that:
1. data is always equal to 5
2. Probability of address = 4’d0 is 10%
3. Probability of address being between [1:14] is 80%
4. Probability of address = 4’d15 is 10%

package my_package;

 class Exercise2;

 rand bit [7:0] data;

 rand bit [3:0] address;

 constraint data_c {data == 5;}

 constraint address_dist {

 address dist {0:=10,

 [1:14]:/80,

 15:=10};

 }

 function void print_all;

 $display("data = %d, address = %d", data, address);

 endfunction

 endclass

endpackage

The := operator when the weight

is the same for every specified

value in the range.

The :/ operator when the weight

is to be equaly divided between

all values.

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

Constraint Exercise 2 solution cont.

42

Demonstrate its usage by generating 20 new data and address values and check for error.

program automatic test;

 import my_package::*;

 initial begin

 Exercise2 MyExercise2;

 repeat (20) begin

 MyExercise2 = new;

 `SV_RAND_CHECK(MyExercise2.randomize());

 MyExercise2.print_all();

 end

 end

endprogram

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

Constraint Exercise 3

43

class Stim;

const bit [31:0] CONGEST_ADDR = 42;

typedef enum {READ, WRITE, CONTROL} stim_e;

randc stim_e kind;

rand bit [31:0] len, src, dst;

bit congestion_test;

constraint c_stim {

len < 1000;

len > 0;

if (congestion_test) {

dst inside {[CONGEST_ADDR-10:CONGEST_ADDR+10]};

src == CONGEST_ADDR;

} else

 src inside {0, [2:10], [100:107]};

}

endclass

What are the constraints on len,
dst, and src for this code?

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

Constraint Exercise 3 solution

44

class Stim;

const bit [31:0] CONGEST_ADDR = 42;

typedef enum {READ, WRITE, CONTROL} stim_e;

randc stim_e kind;

rand bit [31:0] len, src, dst;

bit congestion_test;

constraint c_stim {

len < 1000;

len > 0;

if (congestion_test) {

dst inside {[CONGEST_ADDR-10:CONGEST_ADDR+10]};

src == CONGEST_ADDR;

} else

 src inside {0, [2:10], [100:107]};

}

endclass

What are the constraints on len, dst, and src for
this code?

• len must be between 1 and 999 inclusive
• if bit congestion_test is 1 dst must be inside 42-10 =32 to 42+10 (52) and src = 42
• else src can take on values 0, 2 to 10, and 100 to 107. dst is unconstrained.

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

Constraint Exercise 4

45

For the following class create:
1. A constraint that limits read transactions addresses to the range

0 to 7, inclusive
2. Write behavioral code to turn off the above constraint. Construct

and randomize a MemTrans object with an in-line constraint that
limits read transaction addresses to the range 0 to 8, inclusive.
Test that the in-line constraint is working.

class MemTrans;

 rand bit rw; // read if rw = 0, write if rw = 1

 rand bit [7:0] data_in;

 rand bit [3:0] address;

endclass

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

Constraint Exercise 4 solution

46

A constraint that limits read transactions addresses to the range 0 to 7, inclusive:

or

class MemTrans;
 rand bit rw; // read if rw = 0, write if rw = 1
 rand bit [7:0] data_in;
 rand bit [3:0] address;
 constraint valid_rw_addr { (rw == 0)->(address inside {[0:7]}); }
endclass // MemTrans

class MemTrans;
 rand bit rw; // read if rw = 0, write if rw = 1
 rand bit [7:0] data_in;
 rand bit [3:0] address;
 constraint valid_rw_addr { if (!rw) address inside {[0:7]}; }
endclass // MemTrans

Chapter 6 Copyright 2011 G. Tumbush, C. Spear v1.4

Constraint Exercise 4 solution cont.

47

Write behavioral code to turn off the above constraint. Construct and randomize a
MemTrans object with an in-line constraint that limits read transaction addresses
to the range 0 to 8, inclusive. Test that the in-line constraint is working.

MemTrans MyMemTrans;
 initial begin
 MyMemTrans = new();
 MyMemTrans.valid_rw_address.constraint_mode(0);
 `SV_RAND_CHECK(MyMemTrans.randomize() with {(rw == 0)->(address inside {[0:8]});});
 end

