
Dependency Injection

and

Spring

Problem area

•  Large information systems contains a huge number of
classes that work together

•  How to wire the classes together?
•  How to make it easy to change, test and maintain your

code?

Example: The StudentSystem

•  To improve your skills in Java development, you decide
to develop a student system

•  You decide to use a file to store student information
•  You create a class FileStudentDAO responsible for

writing and reading to the file
•  You create a class StudentSystem responsible for

performing the logic of the system
•  You’ve learned that it’s a good thing to program to

interfaces

The StudentSystem

<< interface >>
StudentDAO

- Collection<Student> getAllStudents()

<< interface >>
StudentSystem

- int getNrOfStudents(String subjectCode)

FileStudentDAO

DefaultStudentSystem
<implements>

<depends>

Responsible for adding,
deleting and getting
students from some

storage medium

Responsible for
performing useful

operations on
students

<implements>

A file

S
ervice layer

P
ersistence layer

The DefaultStudentSystem
public class DefaultStudentSystem implements StudentSystem
{
 private StudentDAO studentDAO = new FileStudentDAO();

 public int getNrOfStudents(String subjectCode)
 {
 Collection<Student> students = studentDAO.getAllStudents();

 int count = 0;

 for (Student student : students)
 {
 if (student.getSubjects.contains(subjectCode))
 {
 count++;
 }
 }

 return count;
 }
}

The StudentDAO
reference is

instantiated with a
concrete class

Works! Or...?

•  The system is a big success – University of Oslo wants
to adopt it!

You use
a file to store the

student information

University of Oslo uses
a MySQL database to

store their student
information

Works! Or...?

•  You make a new implementation of the StudentDAO for
University of Oslo, a MySQLStudentDAO:

<<interface>>
StudentDAO

FileStudentDAO MySQLStudentDAO

<implements> <implements>

Works! Or...?

•  Won’t work! The FileStudentDAO is hard-coded into the
StudentSystem:

public class DefaultStudentSystem implements StudentSystem
{
 private StudentDAO studentDAO = new FileStudentDAO();
 ...

•  The DefaultStudentSystem implementation is
responsible for obtaining a StudentDAO

•  Dependent both on the StudentDAO interface and the
implementation

Works! Or...?

•  How to deploy the StudentSystem at different locations?
•  Develop various versions for each location?

–  Time consuming
–  Confusing and error-prone
–  Requires more efforts for versioning

•  Use Dependency Injection!
–  More specific term derived from the term Inversion of Control

Dependency Injection

Interface/
StudentDAO

Implementation/
FileStudentDAO

Main class/
DefaultStudentSystem

Traditional Using Dependency Injection

Interface/
StudentDAO

IoC Container
(Spring)

Configuration
metadata

Main class/
DefaultStudentSystem

Implementation/
FileStudentDAO

Dependency Injection

•  Objects define their dependencies only through
constructor arguments or setter-methods
–  Enables loose coupling

•  Dependencies are injected into objects by a container
(like Spring)

•  Inversion of Control...
•  Two major types of dependency injection

–  Setter injection (preferred in Spring)
–  Constructor injection

Spring Configuration

public class DefaultStudentSystem implements StudentSystem
{
 private StudentDAO studentDAO;

 public void setStudentDAO(StudentDAO studentDAO)
 {
 this.studentDAO = studentDAO;
 }

 public int getNrOfStudents(String subjectCode)
 {
 List students = studentDAO.getAllStudents();

 // method logic goes here...
 }
}

Spring uses the setter
to inject the dependency

behind the scenes

•  Bean: A class that is managed by a Spring IoC container
•  Setter based DI: Provide a public set-method for the

dependency reference

Dependency Injection with Spring

•  Configuration: How to instantiate, configure, and
assemble the objects in your application
–  The Spring container accepts many configuration formats
–  XML based configuration and annotations most common, Java

properties or programmatically

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN“
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

 <bean id=”studentDAO"
 class="no.uio.inf5750.impl.FileStudentDAO“/>

</beans>

Bean definition

Dependency Injection with Spring

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN“
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

 <bean id=”studentDAO"
 class="no.uio.inf5750.impl.FileStudentDAO“/>

 <bean id=”studentSystem"
 class="no.uio.inf5750.impl.DefaultStudentSystem">
 <property name=”studentDAO”>
 <ref bean=”studentDAO"/>
 </property>
 </bean>

</beans>

Bean identifier,
must be unique

Package-qualified class name,
normally the implementation class

Refers to the studentStore
attribute in the Java class

Refers to the
studentStore bean

StudentStore
injected into

StudentRegister!

Dependency Injection with Spring

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN“
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

 <bean id=”studentDAO"
 class="no.uio.inf5750.impl.MySQLStudentDAO“/>

 <bean id=”studentSystem"
 class="no.uio.inf5750.impl.DefaultStudentSystem">
 <property name=”studentDAO”>
 <ref bean=”studentDAO"/>
 </property>
 </bean>

</beans>

Change to use the
MySQL implementation

instead of the File
implementation

University of Oslo can now use
the system by altering one
configuration line without

changing the compiled code!

Advantages of DI

•  Flexibility
–  Easier to swap implementations of dependencies
–  The system can be re-configured without changing the compiled

code
•  Reusability

–  Dependencies can be injected into components by need
•  Testability

–  Dependencies can be mocked
•  Maintainability

–  Improves “single responsibility” in components
–  Cleaner code

Bean properties

•  Bean properties can be values defined inline as well (not
only references to other beans)

•  Spring’s XML-based configuration supports
–  Straight values (primitives, Strings...)
–  Collections (Lists, Sets, Maps)
–  Properties

Example: Straight values

<bean id=”studentSystem”
 class=”no.uio.inf5750.impl.DefaultStudentSystem”>
 <property name=”maxNrOfStudentsPerCourse”>
 <value>100</value>
 </property>
</bean>

public class DefaultStudentSystem
 implements StudentSystem
{
 private int maxNrOfStudentsPerCourse;

 public void setMaxNrOfStudentsPerCourse(int nr)
 {
 this.maxNrOfStudentsPerCourse = nr;
 }

Java bean

Spring XML
configuration file

(beans.xml)

public class DefaultStudentSystem
 implements StudentSystem
{
 private Map subjects;

 public void setSubjects(Map subjects)
 {
 this.subjects = subjects;
 }

Java bean

Spring XML
configuration file

(beans.xml)

<bean id=”studentSystem”
 class=”no.uio.inf5750.impl.DefaultStudentSystem”>
 <property name=”subjects”>
 <entry>
 <key><value>INF5750</value></key>
 <value>Open Source Software Development</value>
 </entry>
 <entry>
 <key><value>INF5760</value></key>
 <value>Health Information Systems</value>
 </entry>
 </property>
</bean>

Example: Collections

Summary
public class DefaultStudentSystem
 implements StudentSystem
{
 private StudentDAO studentDAO;

 public void setStudentDAO(StudentDAO studentDAO)
 {
 this.studentDAO = studentDAO;
 }

IoC Container
(Spring)

<bean id=”studentDAO"
class="no.uio.inf5750.impl.FileStudentDAO“/>

<bean id=”studentSystem”
class="no.uio.inf5750.impl.DefaultStudentSystem">
 <property name=”studentDAO”>
 <ref bean=”studentDAO"/>
 </property>
</bean>

FileStudentDAO

Configuration

Class where dependencies
are being injected

The implementation
to inject

IoC using Annotations

•  Annotation: Meta-tag applied to classes, methods, props
–  Affects the way tools and frameworks treat source code
–  Typically used for configuration

•  @Component
–  Defines a class as a Spring container-managed component

•  @Autowired
–  Tells Spring to inject a component

•  Classpath scanning for components
–  <context:component-scan base-package="org.example"/>

•  Autowiring modes:
–  By type: injects bean with same class type as property (default)
–  By name: injects bean with same name as property

IoC using Annotations

<context:component-scan base-package="no.tfs.nf"/>

@Component
public class DefaultStudentDao implements StudentDao
{
 // Implementatation omitted
}

Spring config. Enables auto-
wiring and detection of components

@Component
public class DefaultStudentSystem implements StudentSystem
{
 @Autowired
 private StudentDao studentDao;

 public void saveStudent(Student student)
 {
 studentDao.save(student);
 }
}

Class marked as @Component.
Will be detected by container.

StudentDao will be autowired
and is ready to use

Annotations or XML config?

•  Annotations:
–  More concise configuration
–  Faster development

•  XML:

–  Gives overview of all beans and dependencies in the system
–  Keeps the source code unaware of the container
–  All wiring is explicit (multiple implementations easier to manage)

Resources

•  Spring reference documentation
–  www.springframework.org -> Documentation -> Reference

manual

•  http://kohari.org/2007/08/15/defending-dependency-injection/

•  http://en.wikipedia.org/wiki/Loose_coupling

