
Introduction

-

INF 5750

INF 5750

•  Technical basis
–  Interfaces
–  Three-layer architecture

•  Framework and tool overview

Interfaces – What is it?

•  Defines a contract with implementing
classes

•  Defines which methods of a class
which other classes can access

public interface List
{
 int maxSize = 1000;

 boolean add(Object o);
 Object get(int index);
 Object remove(int index);

 // other...
}

Interfaces – How to use it?

•  Declared using the interface keyword
•  Can only contain method signatures

and constant declarations
•  Abstract – can’t be instantiated
•  An implementing class must

implement all methods – or
be abstract itself

•  A class may implement any number
of interfaces

•  Method signatures are public
•  Constants are public and static

public interface List
{
 int maxSize = 1000;

 boolean add(Object o);
 Object get(int index);
 Object remove(int index);

 // other...
}

Interfaces - Example
public interface List
{
 boolean add(Object o);
 Object get(int index);
 Object remove(int index);
}

public class ArrayList
 implements List
{
 private Object[] array = new Object[100];

 public boolean add(Object o)
 {
 array[size++] = o;
 return true;
 }

 public Object get(int index)
 {
 return array[index];
 }

 public Object remove(int index)
 {
 E temp = array[index];
 array[index] = null;
 return temp;
 }

The interface An implementation
backed by an array

List someList = new ArrayList();

Instantiation

Interfaces - Advantages

•  Easy to switch implementations List

ArrayList LinkedList
LinkedList list = new LinkedList();

LinkedList list = new ArrayList();

Works! Choose your
own implementation!

Won’t work! Cannot convert from
ArrayList to LinkedList

Program to concrete classes (bad practise!)

Program to interfaces (good practise!)

List list = new LinkedList();

List list = new ArrayList();

Interfaces - Advantages

•  In projects with many co-operating components:
–  Interactions between components can be defined prior to

implementation
–  Implementation details can be hidden

List
interface

List
implementation

Application
object

Dev B Dev A

Interfaces - Advantages

•  Easier to refactor components
–  Internal methods are not exposed and can be changed or

removed

•  Implementation to use can be decided during runtime
–  More elegant programming model since components can share

the same interface

PdfReportGenerator ExcelReportGenerator

ReportGenerator

Three-layer architecture

Presentation Layer

Service/Business Layer

Persistence Layer

User interface.
Contains only presentation functionality.

Can be web, desktop, remote service etc.

Provides access to the storage medium
(database, flat file, xml file...) through

CRUD methods

Performs the logic (functionality) of the
application. Exposes use-case functionality

through interfaces.

(Storage medium)

(User)

Example: The student system
Presentation Layer

Service/Business Layer

Persistence Layer

Some interface methods:
int addStudent(String name);

void addDegreeToStudent(int studentId, int degreeId);
void removeDegreeFromStudent(int studentId, int degreeId);

boolean studentFulfillsDegreeRequirements(int studentId, int degreeId);

Some interface methods:
int saveStudent(Student student);

Student getStudent(int id);
Collection<Student> getAllStudents();

void delStudent(Student student);

A Java Swing GUI

Principles

•  Separation of concerns
–  Presentation layer contains

presentation logic only!

•  Presentation layer communicates
only with service layer
–  No shortcuts...

•  Assume nothing about the
implementation!
–  Only interact with the contract

(the interface)

Presentation Layer

Service/Business Layer

Persistence Layer

Advantages

•  Flexibility
–  Easy to replace the layers

•  Reusability
–  Re-use of components

•  Testability
–  Mockup-implementations

•  Maintainability
–  Cleaner, understandable code

•  Scalability
–  Distribution of components

across servers

Presentation Layer

Service/Business Layer

Persistence Layer

Framework overview

Spring

Application framework

Provides wiring of

system components

Provides abstraction
layer for other
frameworks

Struts

Web framework

Generates dynamic
content

Hibernate

Object-relational
mapping system

Enables object orientation

and database
independency

Presentation Layer

Service/Business Layer

Persistence Layer

Framework overview

Maven

Software project
management tool

Helps with:

Build process
Project structure

Dependency management
Information and documentation

Subversion

Revision control system

Enables multiple developers
to work on the same source

code base

JUnit

Unit testing framework

Verifies that individual units of code
are working properly

