
Revision control systems (RCS)

and

Subversion

Problem area

•  Software projects with multiple developers need to
coordinate and synchronize the source code

Approaches to version control

•  Work on same computer and take turns coding
–  Nah...

•  Send files by e-mail or put them online
–  Lots of manual work

•  Put files on a shared disk
–  Files get overwritten or deleted and work is lost, lots of direct

coordination

•  In short: Error prone and inefficient

The preferred solution

•  Use a revision control system (like Subversion)
•  RCS - software that allows for multiple developers to

work on the same codebase in a coordinated fashion
•  Can manage any sorts of files
•  Alternatives are Bazaar, Git, Mercurial

How it works

Repository:
Central storage of
the source code at
a server

Working copy:
Local copy of the
source code
residing on the
developer’s
computer (a client)

Some actions:
Import (check out)
Read (update)
Write (commit)

The repository

•  A central store of data
•  Stores information in a virtual

filesystem tree
•  Remembers every change ever

written to it
•  Clients can check out an

independent, private copy of the
filesystem called a working copy

•  Clients connect to the repository and
read or write to the filesystem

Working copies

•  Ordinary directory tree
•  Each directory contains an

administrative directory named .svn
•  Changes are not incorporated or

published until you tell it to do so
•  A working copy corresponds to a

subtree of the repository

Revisions

•  Every commit creates a new revision, which
is identified by a unique revision number

•  Every revision is remembered
by the RCS and forms a
revision history

•  Every revision can be
checked out independently

•  The current revision can be
roll-backed to any revision

•  Commits are atomic

Work cycle
Initial check out:
The developer
checks out the
source code from
the repository

4) Commit:
The developer
makes changes and
writes or merges
them back into the
repository

2) Update:
The developer receives
changes made by other
developers and
syncronizes his local
working copy with the
repository

3) Resolve conflicts:
When a developer has
made local changes
that won’t merge nicely
with other changes,
conflicts must be
manually resolved Repository

Client

1) Development:
The developer makes
changes to the
working copy

Trunk and Branches

•  Trunk is the original main line of development
•  A branch is a copy of trunk which exists independently

and is maintained separately
•  Useful in several situations:

–  Large modifications which takes long time and affects other
parts of the system (safety, flexibility, transparency)

–  Different versions for production and development
–  Customised versions for different requirements

Trunk

Branch 1
Branch 3

Branch 2

Conflicts

•  Arises if several developers edit the same part of a file
•  Solution in Subversion: ”Copy-modify-merge”

1) Developer A makes a
change to Code.java
and commits

3) Developer B updates
his working copy. He will
be noticed that
Code.java is in a state of
conflict.

4) Developer B edits
and resolves the
conflicts, and commits
the file back in the
repository

2) Developer B makes a
change to Code.java and
tries to commit, but gets an
”out-of-date” warning.

Conflicts

•  Changes that do not overlap are merged automatically
•  4 solutions are provided in conflict situations:

–  Use ”mine” version – the developers local copy
–  Use ”their” version – the copy in the repository
–  Use ”base” version – the file before you started editing
–  Use the original file with conflict markers and edit the conflict

manually before comitting

•  Subversion must be told that the conflict is resolved
–  Will remove the temporary files and let you commit

Advantages of RCS

•  Concurrent development by multiple developers
•  Possible to roll-back to earlier versions if development

reaches a dead-end
•  Allows for multiple versions (branches) of a system
•  Logs useful for finding bugs and monitoring the

development process
•  Works as back-up

Good practises

•  Update, build, test, then commit
–  Do not break the checked in copy

•  Update out of habit before you start editing
–  Reduce your risk for integration problems

•  Commit often
–  Reduce others’ risk for integration problems

•  Check changes (diff) before committing
–  Don’t commit unwanted code in the repo

•  Do not use locking
–  Obstructs collaboration

What to add to the repository

•  Source code including tests
•  Resources like configuration files

•  What to not add:

–  Compiled classes / binaries (target folder)
–  IDE project files
–  Third party libraries

•  Add sources, not products (generated files)!

Subversion online commands

•  Checkout a working copy:
–  $ svn checkout http://svn.example.com/scm

•  Update a working copy:
–  $ svn update

•  Commit your changes:
–  $ svn commit –m ”a log message”

•  Create a branch
–  $ svn copy http://svn.example.com/scm/trunk http://

svn.example.com/scm/branches/my-branch

Subversion offline commands

•  Add a file to the working copy:
–  $ svn add Code.java

•  Delete a file from the working copy:
–  $ svn delete Code.java

•  Move a file:
–  $ svn move Code.java dir/Code.java

•  Compare working copy with repository on file-level:
–  $ svn status

•  Compare working copy with repository on code-level:
–  $ svn diff

•  Revert a file to the state from last commit
–  $ svn revert Code.java

Create a repository

/home/projects $ svnadmin create assignment1

Repository

/home/projects/assignment1

/myhome/assignment1 $ svn checkout svn+ssh://username@
 svn.server.url/home/projects/assignment1

/myhome/assignment1/...

Client

Summary

•  Revision control systems enable multiple developers to
work on the same code base

•  Subversion uses a client/server system with a repository
and working copies

•  Every commit generates a new revision, which can be
checked out independently

•  Projects have a trunk version and might have multiple
branches

Resources
•  ”Version control with Subversion”

–  Free PDF book online
–  http://svnbook.red-bean.com/

•  Subversion home page
–  http://subversion.tigris.org/

•  Subversion help command
–  $ svn help <command>

•  TortoiseSVN – Graphical SVN user interface (Win)
–  http://tortoisesvn.tigris.org

