Unit Testing

and

JUnit

Testing

Shorten the feedback loop!

« If testing is an afterthought, it is already too
late!

Are you creating the right solution”?
Is it designed well?
Is it correct?

Tests saves time
— though it might not feel like it

Unit testing problem area

« Code components must be tested!
— Confirms that your code works

« Components must be tested in isolation

— A functional test can tell you that a bug exists in the
implementation

— A unit test tells you where the bug is located

Test failure!
] But where
is the bug?

Component A

<using>/ \<using>

Component B Component C

Example: The Calculator

public interface Calculator

{

int add(int number1, int number2);

int multiply(int number1, int number2);

}

public class DefaultCalculator
implements Calculator

{

public int add(int number1, int number2)

{

return number1 + number2;

}

public int multiply(int number1, int number2)

{

return number1 * number2;

}
}

Approaches to unit testing

« Write a small command-line program, enter values, and
verify output
— Involves your ability to type numbers
— Requires skills in mental calculation
— Doesn’t verify your code when its released

Approaches to unit testing

« Write a simple test program
— Obijective and preserves testing efforts
— Requires you to monitor the screen for error messages
— Inflexible when more tests are needed

public class TestCalculator

{

public static void main(String[] args)

{

Calculator calculator = new DefaultCalculator();
int result = calculator.add(8, 7);

if (result!=15)
{

System.out.printin("Wrong result: ” + result);

}
}

}

The preferred solution

Use a unit testing framework like JUnit

A unit is the smallest testable component in an
application

A unit iIs In most cases a method

A unit does not depend on other components which are
not unit tested themselves

Focus on whether a method is following its AP/ contract

Component A Unit test A

<usmg>/ \<usmg>

UnittestB |——» | Component B Component C «—— UnittestC

JUnit

* De facto standard for developing unit tests in Java
— One of the most important Java libraries ever developed

— Made unit testing easy and popular among developers
— Driven by annotations

— Spring provides integration with JUnit

Using Junit annotations

No need to follow naming conventions
— Tests identified by the @ Test annotation
— Fixture methods identified by @Before and @After annotations

Class-scoped fixture
— ldentified by the @BeforeClass and @AfterClass annotations
— Useful for setting up expensive resources, but be careful...

Ignored tests

— ldentified by the @lgnore annotation

— Useful for slow tests and tests failing for reasons beyond you
Timed tests

— ldentified by providing a parameter @ Test(timeout=500)
— Useful for benchmarking, network, deadlock testing

Test fixtures

Tests may require common resources to be set up
— Complex data structures
— Database connections

A fixture is a set of common needed resources

A fixture can be created by overriding the setUp and
tearDown methods from TestCase

setUp is invoked before each test, tearDown after

TestCase
lifecycle

\ 4
A 4
A 4

A

setUp() testXXX() tearDown()

JUnit Calculator test

import static junit.framework.Assert.*;
Static import of Assert

public class CalculatorTest

{

Calculator calculator;

@Before

Fixture public void before()

{
}

calculator = new DefaultCalculator();

@Test
public void addTest()

Fixture 5

{

int sum = calculator.add(8, 7);
Use assertEquals to
verify output , assertEquals(sum, 15);

}

@Test

public void deleteTest()
{

}

Example: The EventDAO

_ public class Event()
Event object > {
private int id;

private String title;

private Date date;

/I constructors
/I get and set methods

EventDAO interface public interface EventDAO
{

int saveEvent(Event event);

Event getEvent(intid);

void deleteEvent(Event event);

}

EventDAOTest

Assert imported statically — | import static junit.framework.Assert.assertEquals;
-, | @Before
Fixture method identified public void init()
by the @Before annotation {

eventDAO = new MemoryEventDAO();
event = new Event("U2 concert”, date);

}
. o L » | @Test
Test identified by the @Test public void saveEvent()
annotation. Test signature is {
equal to method signature. int id = eventDAQO.saveEvent(event);

event = eventDAO.getEvent(id);

assertEquals(id, event.getld());
}

——» | @Test @lgnore

Test being ignored S
Public void getEvent()

{
/l Testing code...

}

The Assert class

Contains methods for testing whether:
— Conditions are true or false
— Objects are equal or not
— Objects are null or not

If the test fails, an AssertionFailedError is thrown
All methods have overloads for various parameter types
Methods available because TestCase inherits Assert

Assert

<inherits>

TestCase

<inherits>

EventDAOTest

Assert methods

Method

Description

assertTrue(boolean)

Asserts that a condition is true.

assertFalse(boolean)

Asserts that a condition is false.

assertEquals(Object, Object)

Asserts that two objects are equal.

assertNotNull(Object)

Asserts that an object is not null.

assertNull(Object)

Asserts that an object is null.

assertSame(Object, Object)

Asserts that two references refer to the same object.

assertNotSame(Object, Object)

Asserts that two references do not refer to the same object.

fail(String)

Asserts that a test fails, and prints the given message.

Assert in EventDAQO Test

@Test
public void testSaveEvent()

{

int id = eventDAQO.saveEvent(event);

event = eventDAO.getEvent(id);

Asserts that the saved object is
equal to the retrieved object assertEquals(id, event.getld());

assertEquals("U2 concert”, event.getTitle());

Y
Saves and retrieves an Event @Test =
with the generated identifier | » EUbI'C void testGetEvent()

intid = eventDAO.saveEvent(event);

event = eventDAO.getEvent(id);

An object is expected —>
assertNotNull(event);

event = eventDAO.getEvent(-1);

Asserts that null is returned

. : assertNull(event);
when no object exists }

Testing Exceptions

 Methods may be required to throw exceptions

» Expected exception can be declared as an annotation
— @Test(expected = UnsupportedOperationException.class)

Annotation _deCIareS that an — | @Test(expected = UnsupportedOperationException.class)
exception of class public void divideByZero()
UnsupportedOperationException {

is supposed to be thrown } calculator.divide(4, 0);

Running JUnit

 Textual test runner
— Used from the command line
— Easy to run

* Integrate with Eclipse

— Convenient, integrated testing within your development
environment!

 Integrate with Maven
— Gets included in the build lifecycle!

Spring test support

« Spring has excellent test support providing:
— loC container caching
— Dependency injection of test fixture instances / dependencies
— Transaction management and rollback

Spring (spring-test) integrates nicely with Junit

@RunWith(SpringJUnit4ClassRunner.class)
1) Defines underlying test @ContextConfiguration(locations={"classpath*:/META-INF/beans.xml"})
> | @Transactional

framework .

2) Defines location of public class EventDaoTest
Spring config file { @Autowired

3) Makes class transactional Private EventDao eventDao;

@Test
/ public void testSaveEvent(Event event)

{
Autowires dependencies }

JUnit with Eclipse

» Eclipse features a JUnit view
* Provides an informativ GUI displaying test summaries

» Lets you edit the code, compile and test without leaving
the Eclipse environment

[010 —L\ —L\ :§;$ Q- Ou % d“ # G-

Package Explorer SFissi, 8% S8 BB) Q;, v B
Finished after 0,02 seconds
Runs: 2/2 B Errors: 0 B Failures: 0

= mL_, no.uio.inf5750.example.junit.calculator.CalculatorTest [Runner: JUnit 4]
EE testAdd

=} testMultiply

JUnit with Maven

« Maven provides support for automated unit testing with
JUnit

« Unit testing is included in the build lifecycle

— Verifies that existing components work when other components
are added or changed

<dependency>
Add dependency <groupld>junit</groupld>
to POM to put - > <artifactld>junit</artifactld>
JUnit on the classpath <version>4.4</version>
</dependency>
Execute the Maven $ mvn test
test phase

JUnit with Maven

Maven requires all test-class names to contain Test
Standard directory for test classes is src/test/java
The test phase is mapped to the Surefire plugin
Surefire will generate reports based on your test runs
Reports are located in target/surefire-reports

[Running no.uio.inf575@.example. junit.calculator.CalculatorTest

| sun: 2, Failures: 8, Errors: B, Skipped: @, Time elapsed: 8.89 sec
no.uio.inf575A.example.junit.event.EventDAOTest

Tests run: 3, Failures: @, Errors: 8, Skipped: @B, Time elapsed: 8.83 sec

FO1 Finished at: Sun Sep 16 13:46:58 CEST 2887
FO1 Final Memory: 3M/127M

Best practises

One unit test for each tested method

— Makes debugging easier

— Easier to maintain

Choose descriptive test method names

— TestCase: Use the testXXX naming convention
— Annotations: Use the method signature of the tested method

Automate your test execution
— If you add or change features, the old ones must still work
— Also called regression testing

Test more than the "happy path”

— Qut-of-domain values
— Boundary conditions

Advantages of unit testing

Improves debugging
— Easy to track down bugs

Facilitates refactoring

— Verifies that existing features still work while changing the code
structure

Enables teamwork

— Lets you deliver tested components without waiting for the whole
application to finish

Promotes object oriented design
— Requires your code to be divided in small, re-usable units

Serving as developer documentation
— Unit tests are samples that demonstrates usage of the API

Resources

Vincent Massol: JUnit in Action
— Two free sample chapters
— http://www.manning.com/massol

JUnit home page (www.junit.org)
— Articles and forum

Articles

Spring documentation chapter 9

