Making a
software fact

What is a software factory?

e “A factory (previously manufactory) or manufacturing
plant is an industrial site, usually consisting of buildings
and machinery, or more commonly a complex having
several buildings, where workers manufacture goods or
operate machines processing one product into
another.”

e A software business, or an open source project, is
similar to a factory... It requires tools and processes.

e |t's worth thinking about software development like this

http://en.wikipedia.org/wiki/Manufacturing
http://en.wikipedia.org/wiki/Good_(economics)
http://en.wikipedia.org/wiki/Machine
http://en.wikipedia.org/wiki/Process_Manufacturing

Main software factory tools

Design tools

Source revision control system
Build and dependency systems
Communication and
documentation

Bug reporting and project tools
Test tools

Continuous integration tools
Deliverv and deplovment tools

Continuous integration

e Distributed software development

e Any developer can introduce bugs that
can cause project failure

e Extreme Programming — CI

e |mplement Unit tests, Acceptance
tests and integration tests

e Integration tests check the integrity of
the whole system, not just units

e Small code changes — system failure

Continuous integration

e The first step is to use source control and a
build system that incorporates testing.

e Each developer should test before commit.

e There are lots of automated build systems
that compiles, tests and deploys your
software.

e DHIS2 uses Jenkins: http://apps.dhis2.ora/ci/

http://apps.dhis2.org/ci/

Integration loop
Package g} (1o

Automatic and out code
tests Code / Deploy \
’ Developer \ wotificat Automated -
perspective o pProcess

Commit Update \ /
\ Build & / Reports & _

test Notifications ~

Jenkins

Basic stuff: builds, tests and deploys

Helps you keep an overview of developers

Notifies developers if their code breaks

Tests reports, with history of broken builds

Help keep track of deployed versions (file fingerprints)
Extensive list of plugins. Source code management,
build triggers, build tools, build wrappers/deployment
tools, build notifiers, test reports...

Deploy artifacts in the Maven repository

https://wiki.jenkins-ci.org/display/JENKINS/Plugins
http://maven.dhis2.org

Some good tips

Break up tasks. Commit often.
Write unit tests, requirement tests and integration tests.
Update your code from the repository regularly
Implement peer reviews of source code

Before committing code to the repository, always
compile the entire (updated) code and run tests.
Test in production environment - HW can wake bugs
Automated testing does not replace manual testers
Use your own products

Bug reporting tools

e Basic: report bug, get ticket, involve developers, discuss
Issue, see status, workflow, integr with other tools etc.

e For open source projects, often handled by Github,
Bitbucket, Launchpad etc.

e Also standalone tools: Bugzilla, Apache Bloodhound,
Jira etc. Blurred boundary to project management tools.

e Documentation, test planning, workflow, discussion
around bugs etc.

e DHIS2 uses Launchpad’s internal features.

Documentation

e |f source code documentation is done right, a lot of the
documentation is done while coding

e Build systems generate nice-looking APl documentation
based on your code.

e Other documentation in open source is often Wiki-based
(or other collaborative documentation software)

e There are free Wikis (Wikimedia etc) and commercial
ones (Atlassian Confluence etc)

e DHIS2 uses Docbook. Group projects use Wiki

https://www.google.no/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCkQFjAA&url=http%3A%2F%2Fwww.docbook.org%2F&ei=ieF2UuO6DOep4ATN-ICYBw&usg=AFQjCNHtErWInFJy1-AwBBy3I2J3NS2ZoA&sig2=Tp3-f2fH2XxQol3-ahz_Zg&bvm=bv.55819444,d.bGE

Deploying your software

e Moving towards cloud based deployment

e Infrastructure as a service (Linode, AWS etc)

e Platform as a service (Google App Engine, web hosting
etc). More or less scalable.

e Software as a service (Salesforce.com etc)

e Network as a service

e Service deployment of your open source software has
license issues. More on this later.

Private/ <
Internal

Public/ §[T— ‘.)
\ External T

< [The Cloud \
U - |

N AN

—
l

On Premises / Internal Off Premises / Third Party

Cloud Computing Types

CC-8¢-5A 1 0by Samn |ahvnbon

Google App Engine (Cloud)

Deploy your web based applications on Google

Fairly high restrictions on what you can do. Not JavaEE.
AppEngine Data Store, CloudSQL, Google Cloud storage
Can run Hibernate and Spring, but has limitations

OK for simple projects

Free to start... pay as you go. Scalable pricing

Your code is tied closely to Google’s system

Deploy straight from Eclipse

No ‘hardware’ concept...

https://appengine.google.com/
https://appengine.google.com/
https://developers.google.com/appengine/articles/using_hibernate
https://developers.google.com/eclipse/
https://developers.google.com/eclipse/

Amazon Web Services

Probably the largest and most famous P/laaS vendor.
Basic form: Get a linux installation. Full control. EC2
More advanced: Use their APIs. Lock in to AWS.
Also have Beanstalk, similar to Google App Engine.
Pay as you go, scalable.

Very high-scale platform and services.

Free for one year with a very small instance

Can use Hibernate and Spring etc to abstract APls

http://aws.amazon.com/free/
http://aws.amazon.com/free/

Linode - virtual linux...

e If you don’t want to tie into a vendor

e Linode and others provide virtual linux servers. Has
some level of scalability, but not as extreme as AWS

e You are sharing hardware with others. You have your
own virtual Linux installations.

e Linode is run on XEN, an open source cloud system

e XEN is used by many similar vendors. Also alternatives
to XEN.

e Another alternative - dedicated co-location/rack space

http://www.xenproject.org/
http://www.xenproject.org/directory/directory/hosting.html

