
Making a 
software factory
INF5750



What is a software factory?
● “A factory (previously manufactory) or manufacturing 

plant is an industrial site, usually consisting of buildings 
and machinery, or more commonly a complex having 
several buildings, where workers manufacture goods or 
operate machines processing one product into 
another.”

● A software business, or an open source project, is 
similar to a factory… It requires tools and processes.

● It’s worth thinking about software development like this 

http://en.wikipedia.org/wiki/Manufacturing
http://en.wikipedia.org/wiki/Good_(economics)
http://en.wikipedia.org/wiki/Machine
http://en.wikipedia.org/wiki/Process_Manufacturing


Main software factory tools
● Design tools
● Source revision control system
● Build and dependency systems
● Communication and 

documentation 
● Bug reporting and project tools
● Test tools
● Continuous integration tools
● Delivery and deployment tools 



Continuous integration
● Distributed software development 
● Any developer can introduce bugs that 

can cause project failure
● Extreme Programming → CI
● Implement Unit tests, Acceptance 

tests and integration tests 
● Integration tests check the integrity of 

the whole system, not just units 
● Small code changes → system failure



Continuous integration
● The first step is to use source control and a 

build system that incorporates testing. 
● Each developer should test before commit. 
● There are lots of automated build systems 

that compiles, tests and deploys your 
software.

● DHIS2 uses Jenkins: http://apps.dhis2.org/ci/

http://apps.dhis2.org/ci/


Integration loop

Developer
perspective

Automated 
process



Jenkins
● Basic stuff: builds, tests and deploys
● Helps you keep an overview of developers
● Notifies developers if their code breaks
● Tests reports, with history of broken builds
● Help keep track of deployed versions (file fingerprints)
● Extensive list of plugins. Source code management, 

build triggers, build tools, build wrappers/deployment 
tools, build notifiers, test reports… 

● Deploy artifacts in the Maven repository

https://wiki.jenkins-ci.org/display/JENKINS/Plugins
http://maven.dhis2.org


Some good tips
● Break up tasks. Commit often. 
● Write unit tests, requirement tests and integration tests. 
● Update your code from the repository regularly
● Implement peer reviews of source code
● Before committing code to the repository, always 

compile the entire (updated) code and run tests. 
● Test in production environment - HW can wake bugs
● Automated testing does not replace manual testers
● Use your own products



Bug reporting tools
● Basic: report bug, get ticket, involve developers, discuss 

issue, see status, workflow, integr with other tools etc. 
● For open source projects, often handled by Github, 

Bitbucket, Launchpad etc. 
● Also standalone tools: Bugzilla, Apache Bloodhound, 

Jira etc. Blurred boundary to project management tools. 
● Documentation, test planning, workflow, discussion 

around bugs etc. 
● DHIS2 uses Launchpad’s internal features. 



Documentation
● If source code documentation is done right, a lot of the 

documentation is done while coding
● Build systems generate nice-looking API documentation 

based on your code. 
● Other documentation in open source is often Wiki-based 

(or other collaborative documentation software)
● There are free Wikis (Wikimedia etc) and commercial 

ones (Atlassian Confluence etc)
● DHIS2 uses Docbook. Group projects use Wiki

https://www.google.no/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCkQFjAA&url=http%3A%2F%2Fwww.docbook.org%2F&ei=ieF2UuO6DOep4ATN-ICYBw&usg=AFQjCNHtErWInFJy1-AwBBy3I2J3NS2ZoA&sig2=Tp3-f2fH2XxQol3-ahz_Zg&bvm=bv.55819444,d.bGE


Deploying your software
● Moving towards cloud based deployment
● Infrastructure as a service (Linode, AWS etc)
● Platform as a service (Google App Engine, web hosting 

etc). More or less scalable. 
● Software as a service (Salesforce.com etc)
● Network as a service 
● Service deployment of your open source software has 

license issues. More on this later. 



Cloud



Google App Engine (Cloud)
● Deploy your web based applications on Google
● Fairly high restrictions on what you can do. Not JavaEE.
● AppEngine Data Store, CloudSQL, Google Cloud storage
● Can run Hibernate and Spring, but has limitations
● OK for simple projects
● Free to start… pay as you go. Scalable pricing
● Your code is tied closely to Google’s system
● Deploy straight from Eclipse
● No ‘hardware’ concept… 

https://appengine.google.com/
https://appengine.google.com/
https://developers.google.com/appengine/articles/using_hibernate
https://developers.google.com/eclipse/
https://developers.google.com/eclipse/


Amazon Web Services 
● Probably the largest and most famous P/IaaS vendor. 
● Basic form: Get a linux installation. Full control. EC2
● More advanced: Use their APIs. Lock in to AWS.
● Also have Beanstalk, similar to Google App Engine. 
● Pay as you go, scalable. 
● Very high-scale platform and services. 
● Free for one year with a very small instance 
● Can use Hibernate and Spring etc to abstract APIs

http://aws.amazon.com/free/
http://aws.amazon.com/free/


Linode - virtual linux… 
● If you don’t want to tie into a vendor
● Linode and others provide virtual linux servers. Has 

some level of scalability, but not as extreme as AWS
● You are sharing hardware with others. You have your 

own virtual Linux installations. 
● Linode is run on XEN, an open source cloud system
● XEN is used by many similar vendors. Also alternatives 

to XEN.
● Another alternative - dedicated co-location/rack space

http://www.xenproject.org/
http://www.xenproject.org/directory/directory/hosting.html

