
INTRODUCTION 
TO FRONT-END 
DEVELOPMENT



Lars Henrik Nordli

• Worked in Accenture since 
August 2016

• Front-end Developer

• ACIT

ABOUT US

Copyright © 2017 Accenture. All rights reserved. 2

Ekaterina Orlova

• Worked in Accenture since 
January 2015

• Front-end Developer

• Telenor



A self-service solution for corporate clients for Telenor Norway



Copyright © 2017 Accenture. All rights reserved. 4

ACIT CLOUD STUDIO
ACCENTURE CENTER FOR IBM TECHNOLOGIES (ACIT) IS A MULTI-
DISCIPLINARY TEAM THAT MAKES PROTOTYPES FOR CLIENTS IN 
4-8 WEEKS.
WE SHOW CLIENTS WHAT IS POSSIBLE WITH NEW TECHNOLOGY

+MULTI-DISCIPLINARY 
TEAM

USER-CENTERED 
DESIGN

DELIVERY 
INNOVATION

+

BUILT ON EMERGING IBM TECHNOLOGIESIBM Bluemix IBM Watson



FRONT-END 
DEVELOPMENT





THE WEB







https://hackernoon.com/how-it-feels-to-learn-javascript-in-2016-d3a717dd577f



https://www.webdesignerdepot.com/2017/04/the-state-of-front-end-tooling/

Which 
JavaScript 
libraries 
and/or 
frameworks 
do you 
currently use 
most 
frequently 
on projects?



ANGULAR



ANGULAR IS A PLATFORM FOR BUILDING WEB APPLICATIONS

Created by Google

ANGULAR
INTRODUCTION

Copyright © 2017 Accenture. All rights reserved. 13

MODULAR STRUCTURE AND COMPONENT BASED ARCHITECTURE

HTML + TYPESCRIPT

Typed superset of JavaScript – type safety and
tooling



ANGULAR CLI

Copyright © 2017 Accenture. All rights reserved. 14

ng generate 

class
component
directive
module
pipe
++



ANGULAR MODULES

Copyright © 2017 Accenture. All rights reserved. 15



A MODULE ER IS A TREE WITH
COMPONENTS

THESE CAN HAVE THEIR OWN
CHILD COMPONENTS

ANGULAR 
COMPONENTS

Copyright © 2017 Accenture. All rights reserved. 16



A COMPONENT
IS IN CHARGE OF ONE PART OF 
THE APPLICATION
– A “VIEW”

A COMPONENT IS A CLASS WITH 
STYLES AND TEMPLATE 
CONNECTED TO IT

YOU CAN DEFINE THE TEMPLATE 
INLINE OR AS AN EXTERNAL 
TEMPLATEURL

ANGULAR AUTOMATICALLY 
EXTRACTS VALUES FROM 
COMPONENT PROPERTIES AND 
UPDATES THEM IN THE BROWSER 
IF THEY CHANGE

ANGULAR 
COMPONENTS

Copyright © 2017 Accenture. All rights reserved. 17

import { Component } from '@angular/core';

@Component({
selector: 'movie-component',
template: `
<h1>{{title}}</h1>
<h2>My favorite movie is: {{myMovie}}</h2>
`

})

export class MovieComponent {
title = ’Movie page';
myMovie = ’Star wars';

}

<movie-component></movie-component>



APPLICATION LOGIC IS DEFINED 
IN A CLASS THAT INTERACTS 
WITH THE VIEW THROUGH 
PROPERTIES AND METHODS

ANGULAR 
COMPONENTS

Copyright © 2017 Accenture. All rights reserved. 18

export class BookListComponent implements OnInit {

books: Book[];
selectedBook: Book;

constructor(private service: BookService) { }

ngOnInit() {
this.books = this.service.getBooks();

}

selectBook(book: Book) {
this.selectedBook = book; 

}
}  



ANGULAR 
COMPONENTS

Copyright © 2017 Accenture. All rights reserved. 19

ngOnChanges() Respond when Angular (re)sets data-bound input properties. 

ngOnInit() Initialize the directive/component after Angular first displays the data-bound properties and sets 
the directive/component's input properties.
Called once, after the first ngOnChanges().

ngDoCheck() Detect and act upon changes that Angular can't or won't detect on its own.
Called during every change detection run, immediately after ngOnChanges() and ngOnInit().

ngAfterContentInit() Respond after Angular projects external content into the component's view.
Called once after the first ngDoCheck().

ngAfterContentChecked() Respond after Angular checks the content projected into the component.
Called after the ngAfterContentInit() and every subsequent ngDoCheck().

ngAfterViewInit() Respond after Angular initializes the component's views and child views.
Called once after the first ngAfterContentChecked().

ngAfterViewChecked() Respond after Angular checks the component's views and child views.
Called after the ngAfterViewInit and every subsequent ngAfterContentChecked().

ngOnDestroy Cleanup just before Angular destroys the directive/component. 
Unsubscribe Observables and detach event handlers to avoid memory leaks.
Called just before Angular destroys the directive/component.



SCOPED STYLES

Copyright © 2017 Accenture. All rights reserved. 20

ANGULAR APPLICATIONS IS STYLED WITH TRADITIONAL CSS

• Angular can encapsulate styles for components –> a more modular design

• Class names and selectors that are defined for a component does not interfere with
other selectors

• Changes made in a component does not interfere with other components

@Component({
selector: 'hero-details',
template: `
<h2>{{hero.name}}</h2>
<hero-team [hero]=hero></hero-team>
<ng-content></ng-content>

`,
styleUrls: ['app/hero-details.component.css']

})
export class HeroDetailsComponent {
/* . . . */
}



ANGULAR TEMPLATES: HTML +

Copyright © 2017 Accenture. All rights reserved. 21

INTERPOLATION : {{myValue}}

Text in between {{ and }}  is called a template expression – usually, this is a property of the
class that should be evaluated by Angular. Evaluating these expressions should happen
without side-effects.

A template statement can act on events that components emit or broadcast. 

<h3>
{{title}}
<img src="{{imageUrl}}">

</h3>

<button (click)="deleteHero()">
Delete hero
</button>



DATA BINDING

Copyright © 2017 Accenture. All rights reserved. 22

Data direction Syntax Type

One-way
from data source
to view

<img [src]="heroImageUrl">
<hero-detail [hero]="currentHero">
</hero-detail>
<div [ngClass]="{'special': isSpecial}"> </div>
{{myValue}}

Interpolation
Property
Attribute
Class
Style

One-way
from view 
to data source

<button (click)="onSave()"> Save</button>
<hero-detail (deleteRequest)="deleteHero()">
</hero-detail>
<div (myClick)="clicked=$event" clickable>click me</div>

Event

Two-way <input [(ngModel)]="name”> Two-way



TWO WAY BINDING

Copyright © 2017 Accenture. All rights reserved. 23



PIPES: DATA TRANSFORMATION

Copyright © 2017 Accenture. All rights reserved. 24

Pipes converts data input to a specified 
output.

Pipes can also receive input parameters

It is also possible to combine (daisy 
chain) multiple pipes. Remember that 
order matters.

<p>Today is {{ day | date }}</p>

<!-- October 18, 2017 -->

<p>Today is {{ day | date:"dd.MM.yy" }} </p>

<!-- 18.10.17 -->

{{ day | date: 'fullDate' | uppercase}}

<!-- WEDNESDAY, OCTOBER 18, 2017 -->



SERVICES

Copyright © 2017 Accenture. All rights reserved. 25

Define a private property in the 
constructor:

Services are used to calculate or output values or 
functions that is needed throughout the application.

A class with a concrete and well-defined task.
Services removes implementation details from 
components = better readability

Import:

A service should be @Injectable so that it can be used 
in and injected into a component. The component 
will create a new instance of the service.



ROUTES

Copyright © 2017 Accenture. All rights reserved. 26

this.router.navigate(['/quiz', id]);

<a routerLink="['/quiz', user.id]"></a>

There are 2 ways to navigate:

Define where the components should appear
based on the route

Define base URL



OTHER COOL STUFF

Copyright © 2017 Accenture. All rights reserved. 27



DEMO

Copyright © 2017 Accenture. All rights reserved. 28



REACT



React is a JS-library, focused on components and 
made for user interfaces

• Created by Facebook

– To better handle micro-tasks and changes on only parts of the web page

• React has quickly become a very popular technology for front-end

• Built for Yarn Package Manager 

– …also created by Facebook

• React is usually written with JSX (therefore, it needs a transpiler, 
e.g., Babel)

– A mix of JS and HTML syntax

– Babel converts JSX to > JS + HTML so the browser can interpret it

REACT 
INTRODUCTION

Copyright © 2017 Accenture. All rights reserved. 30

https://yarnpkg.com/lang/en/


Virtual DOM makes it easier to manipulate selected 
and connected parts of a web application

• DOM = Document Object Model

• DOM-manipulation is traditionally quite tedious

– Programmers are very dependent on events and listeners

• Useful when showing and updating a part of the app dynamically, 
also to show something based on data in another part of the app

– Traditional DOM cannot know what happens where, it only renders on page 
load (except through the use of events and listeners)

• VirtualDOM is layered on top of the DOM and handles changes for 
you

• React.renderDOM()

REACT VIRTUAL DOM

Copyright © 2017 Accenture. All rights reserved. 31



REACT VIRTUAL DOM

Copyright © 2017 Accenture. All rights reserved. 32

https://www.safaribooksonline.com/library/view/learning-react-
native/9781491929049/assets/lnrn_0201.png

https://www.safaribooksonline.com/library/view/learning-react-native/9781491929049/assets/lnrn_0201.png


Components are the main building blocks of React

• When using React, the app should be considered as a collection of 
components (or classes)

– In other words a “piece”, “element” or “part” of a web app.

• Components can have multiple sub-components

– Hierarchical, “parent” and “child”

• You can choose how to split the app into components yourself

– Tradeoff: more components > more difficult to maintain order and cleanliness

– Avoid tight coupling, make your components as independent as possible

– You can also consider reuse, for instance buttons, menus, input fields etc.

REACT COMPONENTS

Copyright © 2017 Accenture. All rights reserved. 33



Copyright © 2017 Accenture. All rights reserved. 34



Copyright © 2017 Accenture. All rights reserved. 35



A component is visible in your app through the 
render()function and a custom HTML tag

• Each component must have a render() function, which 
defines what should be “displayed” in your app

• A component is visible through the component’s name in 
HTML tag format

– Component: CustomerList, JSX: <CustomerList></CustomerList>

– Component: CustomerListElement, JSX: <CustomerListElement/>

• Tags can either be self-closing or not

– This depends on whether a component should have sub components or 
not (sub components must be imported)

– <tag /> vs <tag></tag>

REACT COMPONENTS 
RENDERING AND TAGS

Copyright © 2017 Accenture. All rights reserved. 36



Copyright © 2017 Accenture. All rights reserved. 37

class App extends React.Component{
render(){

return(
<CustomerList/>

)
}

}

ReactDOM.render(
<App/>,
document.getElementById('app')

)

[...]
<body>
<main id="app"></main>
</body>
[...]

import Customer from 'Customer'

class CustomerList extends React.Component {
render(){

return(
<Customer/>

)
}

}



Every component can receive one or more 
props (properties). In addition you can make 
custom functions

• Props defines data that can be passed in as input parameters 
when you render a component

• Properties can be interpreted as input parameters

• Example: *I want to render a CustomerView component with 
the user “John Doe”*

– <CustomerView user=“John Doe" />

– Props are available through this.props.user

REACT COMPONENTS 
FUNCTIONS & PROPS

Copyright © 2017 Accenture. All rights reserved. 38



Copyright © 2017 Accenture. All rights reserved. 39

import Customer from 'Customer'

class CustomerList extends React.Component {
render(){

return(
<Customer name="Bob"/>

)
}

}

class Customer extends React.Component {
[…]
render(){

return(
<p> {this.props.name} </p>

)
}

}



Every component has a state

• State describes a state a component has or can be in

• The state should be considered private for the component, and is 
initialized in the component’s constructor constructor()

• Available through this.state.var

• Can be changed through this.setState({var: 'value'})

– Not this.state.var = value, this will not trigger re-rendering of VirtualDOM

• Sometimes it makes sense to lift the state up to a parent 
component

– F.ex. If something should be handled based on the output/outcome of 

multiple components

REACT COMPONENTS 
STATE & CONSTRUCTOR

Copyright © 2017 Accenture. All rights reserved. 40



Copyright © 2017 Accenture. All rights reserved. 41

import Customer from 'Customer'

class CustomerList extends React.Component {
render(){

return(
<Customer name="Karen"/>

)
}

}

class Customer extends React.Component {
constructor(props) {

super(props);
this.state = {

name: this.props.name,
typeOfCustomer: 'default'

};
}

upgrade() {
this.setState({

typeOfCustomer: 'premium'
});
//NOT this.state.typeOfCustomer = […]

}

render() {
return(

<p> {this.props.name} </p>
)

}
}



Events are useful to define behavior when a 
components is clicked on, hovered over etc.

• The most used are maybe onClick, onKeyUp

• Usually used to call a component’s function

– <CustomerView onClick={ this.showInfo().bind(this) } />

REACT COMPONENTS 
EVENTS

Copyright © 2017 Accenture. All rights reserved. 42



Copyright © 2017 Accenture. All rights reserved. 43

import Customer from 'Customer'

class CustomerList extends React.Component {
render(){

return(
<Customer name="Bob"/>

)
}

}

class Customer extends React.Component {
constructor(props) {

super(props);
this.state = {

name: this.props.name,
typeOfCustomer: 'default’

};
}

upgrade() {
this.setState({

typeOfCustomer: 'premium’
});

}

render() {
return(

<p
onClick={this.upgrade().bind(this)}>

{this.props.name} 
</p>

)
}

}



Copyright © 2017 Accenture. All rights reserved. 44

import Customer from 'Customer'

class CustomerList extends React.Component {
render(){ 
return(

<Customer onClick={() => this.upgrade()} 
name="Bob"/>

[...]
}

}

class Customer extends React.Component {
constructor(props) {

super(props);
this.state = {

name: this.props.name,
typeOfCustomer: 'default'

};
}

upgrade() {
this.setState({

typeOfCustomer: 'premium'
});

}

render() {
return(

<p>
{this.props.name} 

</p>
)

}
}



You may encounter terms and syntax that seems foreign 
and difficult to understand

• Define your variables correctly to maintain app performance: const, 
let and var

– Read more about variable definition

• The render() function can only have one element

– If you want multiple components in the render() function, you can, e.g., wrap them in a 
<div>

• The arrow syntax => can seem scary, but it’s just another way to declare 
a anonymous function

– () => {} is the same as function(){}

• Spend a few minutes to understand immutability to maintain 
performance and handle state more accurately

• To define a element’s class name in JSX, use className="klasse"

– Not class="klasse"

REACT TIPS & TRICKS

Copyright © 2017 Accenture. All rights reserved. 45

https://stackoverflow.com/questions/762011/whats-the-difference-between-using-let-and-var-to-declare-a-variable#44103318
https://reactjs.org/tutorial/tutorial.html#why-immutability-is-important


Copyright © 2017 Accenture. All rights reserved. 46

const a = 'Cannot be changed';
let a = 'Block-scoped, nearest block-scoped, may not be 

redeclared';
var a = 'Global, block-scoped and in global window-object'

//---

const f = function(input) {
return input;

}

const f = (input) => {
return input;

}

//---

render(){
return(

<div className="my-class"></div>
);

}



React Native is library made for developing web 
application for mobile and smart devices

• It has built-in handling for touch-events 

– Tap, drag, navigation between pages and more

• Apps can easily be integrated with camera, microphone, gyro 
meter, GPS ++

• Wraps a web application to native iOS and Android apps

• Instagram, AirBnB, Skype, and Walmart are some businesses 
that features parts of the app created with React Native

– Source: https://facebook.github.io/react-native/showcase.html

REACT NATIVE

Copyright © 2017 Accenture. All rights reserved. 47

https://facebook.github.io/react-native/showcase.html


React’s home page has a very good introduction 
to React through making a simple tic-tac-toe 
application – this one is highly recommended to 
do!

I WANT TO TRY 
REACT!

Copyright © 2017 Accenture. All rights reserved. 48

https://reactjs.org/tutorial/tutorial.html

https://reactjs.org/tutorial/tutorial.html


FRAMEWORK 
COMPARISON



Copyright © 2017 Accenture. All rights reserved. 50

“THERE IS A 
POINT IN YOUR 
PROGRAMMING 
CAREER, WHEN 
YOU REALISE 
THAT THERE 
ISN’T A BEST 
TOOL”
- funfunfunction (YouTuber)

EVERY LIBRARY HAS 
ADVANTAGES AND 

DISADVANTAGES



RANKING WITHIN 
SOME AREAS

Copyright © 2017 Accenture. All rights reserved. 51

Learning Curve Scalability 3rd party comp. Community EmploymentPerformance

Companies Beyond the Web Simplicity (code) Development Time Size Future Outlooks

?

Source: Hackernoon, Jan 17

https://hackernoon.com/angular-vs-react-the-deal-breaker-7d76c04496bc


Copyright © 2017 Accenture. All rights reserved. 52

Type safety (TypeScript) Heavy platform

Extensive feature set – Validation, AJAX, 
Animations, etc.

Performance

Code separation Some awkward, unintuitive APIs

Almost pure JavaScript JSX, some awkward syntax

Lightweight Intermixed View, Style, and Logic code

Brevity State management

Half-intermixed View, Style, and Logic code Half-intermixed View, Style, and Logic code

Lightweight Unintuitive attribute binding

Framework support for filters, computed 
properties, transitions, etc.

IDE support not great

You might like… Du may not like…

Source: Object Partners, Jul 17

https://objectpartners.com/2017/07/25/angular-react-or-vue-js-which-one-is-for-me/


THANK YOU!

LARS.HENRIK.NORDLI@ACCENTURE.COM

EKATERINA.ORLOVA@ACCENTURE.COM

Copyright © 2017 Accenture. All rights reserved. 53

mailto:Lars.henrik.nordli@accenture.com
mailto:ekaterina.orlova@accenture.com

