
INF5750
More JavaScript



Outline

• I. More JS concepts


• II. New ES2015 features


• III. Node.js web service



I. More JS concepts

• Scope and closure


• this binding


• Classes and prototypes


• Event loop and async programming



Scope and closure

• Scope: set of rules storing and retrieving variables


• Scope is defined by functions*


• JS scope is lexical - defined by source code


• Scopes can be nested - global it the outermost scope



Nested scope
var a = "global scope";
scope1();

function scope1() {
var b = "scope of scope1()";

function scope2() {
var c = "scope of scope2()";

}

console.log(c); //ReferenceError
}



Closure
• A function can have closure over a scope


• Variables of that scope will be available even if the function is 
executed outside this scope


• Modules generally rely on closure to ensure private variables 
can be used outside the module itslelf


https://jsbin.com/vecayu/edit?js,console


https://jsbin.com/hejabup/41/edit?js,console

https://jsbin.com/vecayu/edit?js,console
https://jsbin.com/hejabup/41/edit?js,console


this binding
• this is a special keyword defined in the scope of every 

function


• Runtime binding that depends on how the function was 
called - the call-site


• Does not refer to:


• The function itself


• The function’s lexical scope


• Implicit mechanism for passing object references



this binding rules
• Default binding: call with plain global object


• Implicit binding: call from "owning" object


• Explicit binding: call using .call() .apply() or use .bind()


• new binding: call using new returns new object which is this 

https://jsbin.com/xijaze/90/edit?html,js,output 

• Order: new - explicit - implicit - default



Prototypes and classes
• JS is object oriented, but does not have (real) classes


• Class-based languages are based on instantiation of 
classes, i.e. making new copies of a class


• JS is based on making new objects with links to 
prototypes


• Class-based object oriented design patterns can largely 
be replicated in JS



Prototypes

• All objects have a hidden [[Prototype]] property linked to 
an object that becomes the prototype


• Can be a chain of linked objects, ending with an Object 
prototype


• The prototype chain is traversed when looking for 
properties on an object



OO vs OLOO

• Object oriented (OO) vs objects linked to other objects 
(OOLO)


• Disagreement on what is appropriate in general and in JS


• OO based on base/super class that can be extended


• OOLO based on delegating common functionality to a 
shared object using prototype link



Vehicle.prototype

Car.prototype

myCar

Vehicle

Car

[[Prototype]]

[[Prototype]]

[[Prototype]]

[[Prototype]]

[[Prototype]]

new

https://jsbin.com/wofuqa/edit?js,console

Object

function

object

showWheels()
showEverything()

showEngines()

https://jsbin.com/wofuqa/edit?js,console


Vehicle

Car

myCar

[[Prototype]]

[[Prototype]]

[[Prototype]]

https://jsbin.com/sumopos/edit?js,console

Object

function

object

showWheels()
showEverything()

showEngines()
init()

initCar()

https://jsbin.com/sumopos/edit?js,console


Event loop and async 
programming

• JS application are single threaded:


• can only do one thing at the time


• each "chunk" of code runs from start to finish


• Pieces of code run based on events - user interaction, IO, callbacks


• Runtime environments has an event queue with callbacks to the 
code


• An event loop mechanism takes the first event of the queue and 
runs it to completion, fetches the next event etc



JS Runtime
Call stack API (browser, node.js…)

Event queue

function doNow() {

setTimeout(doLater, 
500);

}

function doLater() {
console.log("later");

}

doNow();

main()

doNow()

setTimeout()

doLater()

Event loop tick!

doLater()

console.log()



Event loop (better) 
illustrated

https://www.youtube.com/watch?v=8aGhZQkoFbQ&t=22m20s


• Watch the full video later!

https://www.youtube.com/watch?v=8aGhZQkoFbQ&t=22m20s
https://www.youtube.com/watch?v=8aGhZQkoFbQ


Async programming
• Requirement that web pages or web services are not blocked 

e.g. while waiting for data to be returned over the network


• Rely on callbacks and promises to work asynchronously


• Callbacks from runtime to our applications are added to 
callback/event queue


• Challenges with callbacks: callback hell and trust issues


https://jsbin.com/niraha/edit?js,console

https://jsbin.com/niraha/edit?js,console


II. New ES2015 features
• Transpiling and shimming 


• New syntax


• Collections


• Classes


• Async programming - promises and generators


• Overview of features: http://es6-features.org

http://es6-features.org


Polyfills and transpilers
• Not all new language features supported in all browsers


• Two solutions/workarounds:


• New APIs, features on objects etc: polyfills/shims - 


• New syntax: transpiling code into old syntax 


https://babeljs.io/repl/ 


https://kangax.github.io/compat-table/es6/

https://babeljs.io/repl/


Block-scoped variables
• var is attached to enclosing function (or global) scope


• let and const are attached to block-scope: { }


• const = constant - cannot be reassigned


https://jsbin.com/sazabul/edit?js,console

https://jsbin.com/sazabul/edit?js,console


Spread and Rest
• … operator - called spread or rest depending on use


• in front of array (or other iterable): spreads individual 
values


• in front of function parameters: gathers the rest of the 
variables in an array


https://jsbin.com/duwale/edit?js,console

https://jsbin.com/duwale/edit?js,console


Default parameter values

• Default function parameter values


• Defaults can be explicit value or expression


https://jsbin.com/cihusel/edit?js,console

https://jsbin.com/cihusel/edit?js,console


Destructuring
• Destructured assignment


• Applies to arrays and objects


• Facilitates assignment of values from indexes (arrays) or 
properties (objects)


• Supports default values, nested properties…


https://jsbin.com/rugacux/edit?js,console

https://jsbin.com/rugacux/edit?js,console


Arrow functions

• Short function syntax: (params) => {expression}


• Single- or multi-line


• Changes this-binding - not just a short form


https://jsbin.com/tacili/edit?js,console



Arrow functions
• When is use of arrow functions appropriate?


• for short, single-state inline function expressions not 
using this binding


• replacing function currently using workarounds for 
lexical this binding (self = this, bind(this) etc…)


• inner functions relying on copies of parameters to bring 
them into lexical scope


• For everything else use normal function declarations…



Template literals
• String literals using ` as delimiter


• Supports:


• embedding expressions in strings


• multiline strings


• tagged template literals


https://jsbin.com/xavorim/edit?js,console

https://jsbin.com/xavorim/edit?js,console


Collections
• Maps - key-value maps where any object can act as key


https://jsbin.com/gidoqiy/edit?js,console


• Sets - collections of unique values


https://jsbin.com/vijula/edit?js,console


• WeakMap and WeakSet - keys (map) and values (set) are hold 
weakly - garbage collected when last reference removed

https://jsbin.com/gidoqiy/edit?js,console
https://jsbin.com/vijula/edit?js,console


Classes

• ES2016 introduced new class-related keywords: class, 
extends, super, static 

• No new functionality, syntactic sugar on existing 
prototype-based functionality


https://jsbin.com/tomarah/edit?js,console

https://jsbin.com/tomarah/edit?js,console


Promises

• Promises are used for program flow in async code


• Provides a "promise" of a future value - something will be 
returned in the future


• Not a replacement for callbacks, but an intermediary


• Promises are either resolved or rejected



Promises in ES2015

• Constructed as new Promise(function)


• The function passed in the constructor call has two 
functions as parameters used to resolve or reject the 
promise


• Promises have a .then() function which takes 1-2 
functions for handling success and failure of promise


https://jsbin.com/lobekaj/edit?js,console

https://jsbin.com/lobekaj/edit?js,console


III. Node.js web service

• Structure of node.js web service



Example structure

router

Car

GET ../api/cars/1?includeOwner=true

Owners

…

/routers 
/controllers /models

Car

Owners

…



Group teachers

• Group teachers to share git repository with:


• Group 1: Mustafa - mustafma on github.uio.no


• Group 2: Mustafa - mustafma on github.uio.no


• Group 3: Nikolai - njsverdr on github.uio.no


• Group 4: August - augusthh on github.uio.no


