
Software	Platform	
Ecosystems

INF5750
2017

Unless noted,	all	tables,	citations,	and	figures are taken from	or	are facsimiles from:	Tiwana,	Amrit.	
Platform	ecosystems:	aligning	architecture,	governance,	and	strategy.	Newnes,	2013.

From	chapters 1,	2	and	5



Contents	and	learning outcome of the lecture

• What platforms are,	and	their core components
• Difference between software platforms and	other types	of platforms
• Drivers towards software platforms
• Some important concepts
• Some important principles
• Important aspects of platform architecture
• Platform	lifecycles
• How	does all	this relate to	your group assignments and	the DHIS2?



Why software platform ecosystems?

• Software	platform ecosystem «logics»	increasingly plays a	more	
dominant	role in	competition in	a	diverse	sets of markets
• Competition	migrating	to	rival	platforms
• potent	mix	of	specialized	expertise	with	the	disciplining	power	of	platform	
markets	can	foster	innovation	at	a	pace	that	can	trump	even	the	mightiest	
product	and	service	business,	e.g.	Blackberry	vs	Apple	and	Google;	Camera	
produces	vs	mobile	phones.

• Why in	the open source development course?



Main	components of a	software platform
iOS Android Nokia



Evolution	of platform ecosystems

• Architecture:	Structure

• Governance:	Process and	rules

• Evolution:	«…	the interplay between	its	irreversible	architecture	and	how	it	is	governed.”



Focus	in	Tiwana (2013):	software platforms:

• Platforms	where third party	complementors add to	platform capabilities and	
functionality
• Possibilities for	hundreds or	thousands of actors to	add functionality to	the same	ecosystem

• Upstream	value	chain	the	platform	itself.	Downstream	app	developers.	End	users	
can	uniquely	mix-and-match	downstream	complements	– making	the	innovation	
and	adoption	in	the	downstream	central	for	success	of	failure
• True	platforms	must	be	at	least	two-sided	and	span	at	least	two	distinct	groups	
app	developers	and	end-users	that	interact	through	the	platform.
• Most	successful	platforms	began	as	standalone	products	or	services:	iOS,	
Windows,	Facebook,	Amazon,	eBay,	Google,	Firefox,	Salesforce,	and	Dropbox

• What does that imply and	mean?



Drivers	towards platformization



More	about drivers

• Deepening specialization:
• Software	code grow larger and	become more	complex (more	functionality)	->	more	specialization
needed for	further growth.	

• ->	More	focus needed for	companies
• ->	Need for	integration of distributed knowledge from	others
• ->	More	effort to	compete against successful platform owners

• Packetization:
• Digitalization of an	activity,	process,	product or	service

• ->	Enables transportation of information through the Internet – high speed,	low cost – Removes
location	constraints to	work ->	new possible business	models

• ->	Deepening specialization
• Example:	global	radiology service	in	India	(e.g.	https://www.outsource2india.com/services/radiology.asp)



More	about drivers

• Software	embedding:
• Making software of business	processes and	activities

• Example:	credit card,	Vipps,	cool	photo filters

• ->	from	products to	services	– clients to	web-based services,	software based maps in	cars
• ->	physical – digital	boundary -
• ->	convergence across industries – gaming consoles and	cameras into phones,	Amazon	kindle

• Internet of things:
• Cheap sensors	online	and	networked

• Example:	Sensors	to	monitor	patients at	home,	door sensors	telling	if you forget to	lock your door

• ->	From	stock of data	to	streams of data	
• ->	Communication of contextual data	
• Examples:	One	Tesla	car telling	about hump	in	the road – all	other cars get the information and	
adjust car configuration to	take less	impact when driving	through the same	place.

• Optimalization of resources in	a	hospital,	dynamic prize regulations



More	about drivers

• Ubiquity:
• Precence of Internet «everywhere»	– lower prices – faster	network

• ->	location	independence of tasks and	services
• ->	networks of firms
• ->	crowdsourcing

• Example:	Google	maps traffic information

• The	combination of the drivers
• Pushing innovation ecosystems towards growing number of industries,	like:

• mortgage,	finance,	drug development,	software,	automotive,	healthcare,	banking,	food	
services,	and	energy



Platform	concepts

• Platform	lifecycle:



Lifecycle



Platform	concepts

• Platform	properties:



Properties



Platform	concepts

• Platform	dynamics:



Platform	guiding principles

• Platform	startup principles:



Platform	guiding principles

• Platform	design	principles:



Platform	guiding principles

• Platform	evolution principles



Some key points
• The	lifecycle	of	a	technology	solution	has	three-dimensions:

• pre- or	post-dominant	design	stage	(from	many	to	one)
• maturity trajectory (the S-curve)
• proportion	of	the	total	prospective	user	base	adoption

• Multisidedness offers:	same-side	and	cross-side	network	effects,	lock-ins	(coercive	and	value-
driven),	prospects	of	swallowing	or	be	swallowed

• Architectures	provide	blueprint	for	mass	coordination.	Conventional	coordination	and	control	
mechanisms	costly	and	implausible	in	large	ecosystems

• Governance	can	amplify	or	diminish	the	advantages	of	good	architecture.	Governance	and	
architecture	must	be	co-designed	and	coevolved

• Evolutionary	pace	of	a	platform	is	relative	to	its	rivals	(the	Red	Queen	effect).
• Emergent	innovation	can	only	be	facilitated,	not	planned	by	a	platform	owner.	

• Spontaneously	arise	from	the	selfish	pursuit	of	self-interest	by	individual	ecosystem	participants.
• Chicken-or-egg	problem	and	the	penguin	problem	to	get	off	the	ground	- unattractive	for	either	
side	to	join	unless	there	is	a	critical	mass	on	the	other	side.	Uncertainty	about	whether	others	will	
join	the	platform	ecosystem	can	stall	initial	adoption,	creating	the	penguin	problem

• Balance	autonomy	with	integration	(the	seesaw	problem)	separable	but	re-integratable (Humpty	
Dumpty).	Organized	to	mirror	the	architecture	and	the	“microarchitecture”	(the	mirroring
principle).



Platform	architectures

• The	architecture enable (or	not)	participation among potential and	
actual third party	innovators
• Third	party	innovators must	be	able and	motivated to	participate
• Ability	through architecture
• Motivation through governance

• Main	architecture parts	(and	their interconnectedness)
• Platform	core
• Platform	interfaces
• «Apps»



Managing complexity

• What is	complexity?
• A	function of the number of parts,	types	of parts,	and	number and	types	of
connections between the parts.
• Structural (difficult to	describe)
• Behaviorally (difficult to	control and	predict)

• Too	high complexity will lead	to	at	least
• Incomprehensibility
• Gridlock

• ->	loss	of predictable output	from	input	– ripple effects
• ->	co-innovation risk	(80%x80%x80%=51%)	– need to	reduce dependencies at	the right	
place



Managing complexity

• In	a	platform ecosystem with numerous actors,	complexity must	be	
controlled somehow to	reduce risk	of gridlocks,	unpredictable ripple
effects and	co-innovation problems

• ->Architecture
• Balancing between control and	autonomy
• Keeping transaction costs and	coordination cost as	low as	
possible



Architecture	solutions to	orchestrate

• Partitioning (modularization)	– core <->	apps - degrees
• Creating «autonomous»	subsystems

• To	cognitively manageable parts
• Blackboxing

• Visible	information:	what they do	and	how to	interact with them
• Hidden information:	how they work

• Systems	integration
• Development	activities coordination between platform owner and	app developers

• Managing dependencies
• Minimizing need for	coordination

• Apps must	be	integrated to	the platform to	enable value to	end-users
• Platform	– app integration – uneven development,	platform changes – ongoing effort
• App – app integration



Architecture	solutions

• Relatively stable	core
• Platform	architecture
• Visible	part:	Shared sets of assets
through defined interfaces
• Hidden:	inner functions of the
platform core to	make	interfaces
work and	behave as	they do

• Dynamics	and	variability in	apps
->	innovation
• Microarchitecture



App architecture (microarchitecture)



Possible partitioning of layers



Many possibilities for	partitioning the app



Many possibilities for	partitioning the app



App architecture choices have	consequences

• Hard,	or,	impossible	to	maximize all	positive	consequences;	always trade-
offs between partitioning inside the platform and	across the Internet
• Early architecture choices are hard	to	change later	

• ->	creating path dependencies in	architectures
• Some characteristics show	up	immediately:

• speed,	security,	reliability,	scalability,	testability,	and	usability
• Some	at	later	stages:

• maintainability,	extensibility,	evolvability,	and	the	capacity	to	mutate	and	envelop	
adjacent	app	market	segments

• Developers	need	knowledge	about	which	types	of	app	architectures	gives	
which	types	of	trade-offs	and	advantages	
• ->	design,	not	experience	too	late



Platform	architecture

• In	practice,	irreversible
• ->	have	to	stick with early choices and	their consequences

• Desirable	properties
• Simple;	defined interfaces,	functionlity etc.
• Resilient;	not	breaking the ecosystem upon app failure
• Maintainable;	minimizing consequences of local changes
• Evolvable;	balancing between stability/control of interfaces and	autonomy of
innovation

• But also here,	trade-offs.



More	on modularization and	amount of
modularity
• Monolithic versus	modular
• Not	either or	– rather a	continuum between the two extremes,	where
most	lies	in	between

• Some important aspects:
• Division of work among several organizations/actors

• Emergent properties
• Dependencies among modules is	restricted to	defined interfaces
• Need to	be	compliant only to	interface specifications
• Possible performance sacrifications



Balancing needs and	implications



Balancing needs and	implications



What is	in,	what is	out?

• High-reusability functionality
• Generic functionality
• Stable	functionality
• Interfaces	integral	parts	of the platform

• High	uncertainty functionality – out

• But also in:
• For	attractiveness
• Expectation from	end-users



The	interfaces

• Standardization
• Stability
• Versatility
• flexibility in	standards
• highly dependent	functionality stays in	the platform

• Openness
• who can participate



DHIS2	as	a	platform ecosystem?

• How	do	your developed apps relate to	platform architectures as	
described?
• Do	the architectural choices in	your app (together with the DHIS2)	
imply anything for	further development and	evolvement of your app,	
and	in	relation to	the DHIS2	core
• Dependencies – loose coupling
• Modularization
• Usage of APIs
• Placement of functionality and	layers



Platform	vs application vs Information	
infrastructure


