Software Platform

Ecosystems

INF5750
2017

Unless noted, all tables, citations, and figures are taken from or are facsimiles from: Tiwana, Amrit.
Platform ecosystems: aligning architecture, governance, and strategy. Newnes, 2013.

From chapters 1,2 and 5

Contents and learning outcome of the lecture

* What platforms are, and their core components

 Difference between software platforms and other types of platforms
 Drivers towards software platforms

* Some important concepts

 Some important principles

* Important aspects of platform architecture

* Platform lifecycles

* How does all this relate to your group assighments and the DHIS2?

Why software platform ecosystems?

* Software platform ecosystem «logics» increasingly plays a more
dominant role in competition in a diverse sets of markets

 Competition migrating to rival platforms

* potent mix of specialized expertise with the disciplining power of platform
markets can foster innovation at a pace that can trump even the mightiest
product and service business, e.g. Blackberry vs Apple and Google; Camera
produces vs mobile phones.

* Why in the open source development course?

Main components of a software platform

Table 1.1 Core Elements of a Platform Ecosystem

Element Definition Example
Platform The extensible codebase of a software-based system that provides iOS, Android
core functionality shared by apps that interoperate with it, and the Dropbox, Twitter
interfaces through which they interoperate AWS
Firefox, Chrome
App An add-on software subsystem or service that connects to the Apps
platform to add functionality to it. Also referred to as a module, Apps
extension, plug-in, or add-on Apps
Extensions
Ecosystem The collection of the platform and the apps specific to it
Interfaces Specifications that describe how the platform and apps interact APls
and exchange information Protocols

i0S Android Nokia
Environment /’“’ Competing Ecosystem \\
," Competing Ecosystem “\\
- \
/ | Shared Infrastructure Ecosystem ™\
Interfaces P /
Coor> G > o)

"o

clolololor™

FIGURE 1.1

Elements of a platform ecosystem.

Evolution of platform ecosystems

* Architecture: Structure N

A conceptual blueprint that describes how the ecosystem is Govemance

partitioned into a relatively stable platform and a complementary

set of apps that are encouraged to vary, and the design rules
binding on both

FIGURE 2.19

Architecture and governance are the two gears of evolution of a platform ecosystem.

e Governance: Process and rules

Broadly, who decides what in a platform’s ecosystem. This encompasses partitioning of

decision-making authority between platforrn owners and app developers, control
mechanisms, and pricing and pie-sharing structures

Evolution: «... the interplay between its irreversible architecture and how it is governed.”

Focus in Tiwana (2013): software platforms:

* Platforms where third party complementors add to platform capabilities and
functionality
* Possibilities for hundreds or thousands of actors to add functionality to the same ecosystem

* Upstream value chain the platform itself. Downstream app developers. End users
can uniquely mix-and-match downstream complements — making the innovation
and adoption in the downstream central for success of failure

True platforms must be at least two-sided and span at least two distinct groups
app developers and end-users that interact through the platform.

Most successful platforms began as standalone products or services: iOS,
Windows, Facebook, Amazon, eBay, Google, Firefox, Salesforce, and Dropbox

What does that imply and mean?

Drivers towards platformization

Table| 1.3 Consequences of the Five Drivers Toward Platform-Centric Business Models

Driver Description Consequences
Deepening Increased need for deep expertise due to e Simultaneously shrinking and expanding
specialization growing complexity of products and firm boundaries
services ¢ Red Queen effect from
clockspeed compression
¢ Increased interdependence among firms
Packetization Digitization of “something” —an activity, ¢ Location-independent distribution ability
a process, a product, or a service —that of work
was previously not digitized ¢ Deepening specialization
Software Baking a routine business activity into * Products-to-services transformation
embedding software ¢ Morphing physical-digital boundary
e Convergence of adjacent industries
Internet of Everyday objects inexpensively gaining * Deluge of data streams from
Things the ability to directly talk using an Internet networked objects
protocol ¢ Context awareness
Ubiquity The growing omnipresence of cheap e Loosely coupled networks rival

and fast wireless Internet data networks

efficiencies of firms

Alters who can participate from where
Alters where services can be delivered
Scale without ownership

Packetization

Software Embedding

Deepening
Specialization N
Platform

Ecosystems

Internet of Things

Ubiquity
FIGURE 1.3

The five drivers of the migration toward platform-centric business models.

More about drivers

* Deepening specialization:

» Software code grow larger and become more complex (more functionality) -> more specialization
needed for further growth.

e -> More focus needed for companies
e -> Need for integration of distributed knowledge from others
* -> More effort to compete against successful platform owners

* Packetization:
* Digitalization of an activity, process, product or service

* ->Enables transportation of information through the Internet — high speed, low cost — Removes
location constraints to work -> new possible business models

e ->Deepening specialization
* Example: global radiology service in India (e.g. https://www.outsource2india.com/services/radiology.asp)

More about drivers

e Software embedding:

* Making software of business processes and activities
* Example: credit card, Vipps, cool photo filters

e ->from products to services — clients to web-based services, software based maps in cars
e ->physical — digital boundary -
e ->convergence across industries — gaming consoles and cameras into phones, Amazon kindle

* Internet of things:

* Cheap sensors online and networked
* Example: Sensors to monitor patients at home, door sensors telling if you forget to lock your door

 -> From stock of data to streams of data
e -> Communication of contextual data

e Examples: One Tesla car telling about hump in the road — all other cars get the information and
adjust car configuration to take less impact when driving through the same place.

* Optimalization of resources in a hospital, dynamic prize regulations

More about drivers

e Ubiquity:

* Precence of Internet «everywhere» — lower prices — faster network

* ->|ocation independence of tasks and services
e -> networks of firms

e -> crowdsourcing
* Example: Google maps traffic information

e The combination of the drivers

* Pushing innovation ecosystems towards growing number of industries, like:

* mortgage, finance, drug development, software, automotive, healthcare, banking, food
services, and energy

Platform concepts

* Platform lifecycle:

Relevance

Concept Platform App Ecosystem Description

Platform ° ° L A multifaceted characterization of whether a technology solution—a platform, an app, or the

lifecycle entire ecosystem—is in its pre- or post-dominant design stage; its current stage along the S-
curve; and the proportion of the prospective user base that has already adopted it

Dominant] o A technology solution that implicitly or explicitly becomes the gold standard among

design competing designs that defines the design attributes that are widely accepted as meeting
users’ needs

S-curve ® ° ® A technology’s lifecycle that describes its progression from introduction, ascent, maturity,
and decline phases

Leapfrogging ° °] Embracing a disruptive technology solution and using it as the foundation for the firm’s
market offering in lieu of an incumbent solution in the decline phase of its S-curve

Diffusion curve L] o A description of whether a technology solution— a platform or an app—is in the stage of having
attracted the geeks, early majority, early adopters, late majority, or laggards to its user base

Lifecycle

Many Alternative
Designs

Dominant Design Emerges

Many
(]
S L Dominant Design
< O Pervasive
3 O
3

Few

Pre-dominant Design Post-dominant Design

FIGURE 2.2

Pre- and post-dominant design phases in a software platform.

S-curve Jumping

A Maturity e -
\,\
N\
4
Ascent f!- o v
i Successor
igi Technolo
i Original Technol N
{ Technology
4 Solution
Introduction /
- / > Time
”’.,....r”
R&D ---------- yon
FIGURE 2.3

S-curves in the technology lifecycle.

Platform concepts

* Platform properties:

Relevance
Concept Platform App Ecosystem Description
Multisidedness The need to attract at least two distinct mutually attracted groups (such as app developers
and end-users) who can potentially interact more efficiently through a platform than without it
Network ® [A property of a technology solution where every additional user makes it more valuable to every
effects other user on the same side (same-side network effects) or the other side (cross-side network
effects)
Multihoming When a participant on either side participates in more than one platform ecosystem
Architecture ° ° A conceptual blueprint that describes components of a technology solution, what they do,
and how they interact
Govemance ® Broadly, who decides what in a platform’s ecosystem. This encompasses partitioning of

decision-making authority between platform owners and app developers, control
mechanisms, and pricing and pie-sharing structures

Properties

RAk
App Developers

FIGURE 2.8

A Two Users
FIGURE 2.9

Five Users

C

Platform e & o
Owner **
End-Users

Two sides in a multisided platform.

Networks effects leverage the number of users that any user can communicate with.

Negative

Positive

Adding someone
decreases appeal
to all existing users

on the same side

Adding someone
decreases appeal
to all existing users
on the other side

Adding someone
increases appeal
to all existing users
on the same side

Adding someone
increases appeal
to all existing users
on the other side

Same Side

Cross-side

Platform concepts

* Platform dynamics:

Relevance
Concept Platform App Ecosystem Description
Tipping o ® The point at which a critical mass of adopters makes positive network effects take off
Lock-in ® ® The ways in which a platform can make it more desirable for existing adopters to not jump
ship to a rival
Competitive ® ® The degree to which the adopters of a technology solution continue to regularly use it long
durability after its initial adoption
Envelopment ® ® When a platform swallows the market of another platform in an adjacent market by adding its
functionality to its existing bundle of functionality

Platform guiding principles

* Platform startup principles:

Chicken-or-egg The dilemma that neither side will find a two-sided technology solution with potential
problem network effects attractive enough to join without a large presence of the other side
The penguin When potential adopters of a platform with potentially strong network effects stall in
problem adopting it because they are unsure whether others will adopt it as well

Platform guiding principles

* Platform design principles:

Seesaw problem

The challenge of managing the delicate balance between app developers’ autonomy to
freely innovate and ensuring that apps seamlessly interoperate with the platform

Humpty Dumpty
problem

When separating an app from the platform makes it difficult to subsequently reintegrate
them

Mirroring principle

The organizational structure of a platform’s ecosystem must mirror its architecture

Platform guiding principles

* Platform evolution principles

Emergence Properties of a platform that arise spontaneously as its participants pursue their own
interests based on their own expertise but adapt to what other ecosystem participants
are doing

Coevolution Simultaneously adjusting architecture and governance of a platform or an app to
maintain alignment between them

Goldilocks rule Humans gravitate toward the middle over the two extreme choices given any three
ordered choices

Red Queen effect The increased pressure to adapt faster just to survive is driven by an increase in the
evolutionary pace of rival technology solutions

Some key points

* The lifecycle of a technology solution has three-dimensions:
e pre- or post-dominant design stage (from many to one)
* maturity trajectory (the S-curve)
» proportion of the total prospective user base adoption

* Multisidedness offers: same-side and cross-side network effects, lock-ins (coercive and value-
driven), prospects of swallowing or be swallowed

* Architectures provide blueprint for mass coordination. Conventional coordination and control
mechanisms costly and implausible in large ecosystems

* Governance can amplify or diminish the advantages of good architecture. Governance and
architecture must be co-designed and coevolved

* Evolutionary pace of a platform is relative to its rivals (the Red Queen effect).

* Emergent innovation can only be facilitated, not planned by a platform owner.
* Spontaneously arise from the selfish pursuit of self-interest by individual ecosystem participants.

* Chicken-or-egg problem and the penguin problem to get off the ground - unattractive for either
side to join unless there is a critical mass on the other side. Uncertainty about whether others will
join the platform ecosystem can stall initial adoption, creating the penguin problem

* Balance autonomy with integration (the seesaw problem) separable but re-integratable (Humpty
Dumpt)5 Organized to mirror the architecture and the “microarchitecture” (the mirroring
principle).

Platform architectures

* The architecture enable (or not) participation among potential and
actual third party innovators

* Third party innovators must be able and motivated to participate
e Ability through architecture
* Motivation through governance

* Main architecture parts (and their interconnectedness)
e Platform core o S

\\\\\\\\\\\\\\\\\\\\\

e Platform interfaces m

* «Apps» > T

sssssssss

Managing complexity

* What is complexity?
* A function of the number of parts, types of parts, and number and types of
connections between the parts.
» Structural (difficult to describe)
* Behaviorally (difficult to control and predict)
* Too high complexity will lead to at least

* Incomprehensibility
* Gridlock

* ->|oss of predictable output from input — ripple effects
e -> co-innovation risk (80%x80%x80%=51%) — need to reduce dependencies at the right
place

Managing complexity

* In a platform ecosystem with numerous actors, complexity must be
controlled somehow to reduce risk of gridlocks, unpredictable ripple
effects and co-innovation problems

. >Architecture

e Balancing between control and autonomy

* Keeping transaction costs and coordination cost as low as
possible

Architecture solutions to orchestrate

 Partitioning (modularization) — core <-> apps - degrees
e Creating «autonomous» subsystems
* To cognitively manageable parts
* Blackboxing

* Visible information: what they do and how to interact with them
* Hidden information: how they work

* Systems integration

* Development activities coordination between platform owner and app developers
* Managing dependencies
* Minimizing need for coordination
* Apps must be integrated to the platform to enable value to end-users
* Platform — app integration — uneven development, platform changes — ongoing effort
* App —app integration

Architecture solutions

 Relatively stable core
* Platform architecture

* Visible part: Shared sets of assets
through defined interfaces

* Hidden: inner functions of the
platform core to make interfaces
work and behave as they do

Platform
Architecture

Ecosystem
Architecture

* Dynamics and variability in apps
-> innovation
 Microarchitecture

App Microarchitecture

App architecture (microarchitecture)

nPresentation Logic

nApplication Logic

nData Access Logic

n Data Storage

Possible partitioning of layers

App-based Platform-based

0% 50% 100%

FIGURE 5.10

Each of the four functional elements of an app can be flexibly partitioned between an app and the platform.

Many possibilities for partitioning the app

Standalone —
-

RS =

--u--n-uu“-uun----C { ----------- ssEEEEEEssmaeE [] —
¢&/_/\/\-/N/

) Internet ~
Client
Server

nPresentation Logicl
nApplication Logic |

nData Access Logicl

nData Storage |
FIGURE 5.11

All four functional elements reside on the client device in the standalone app microarchitecture.

Client-based Architecture

e
r -
i (RS
C D)
1_/\/\/_/
Client Internet

nPresentation Logic |

EAppIication Logic |
HData Access Logic |

FIGURE 5.13
Only data storage resides on the server side in client-based app microarchitecture.

Cloud (Host-based) Architecture
/mf\r\f\
C J]

U vt

Client Internet

(Dumb Terminal)

Server

nPresentation Logicl
HAppIication Logic |

HData Access Logic |

nData Storage |
FIGURE 5.12

All four functional elements reside on the client device in the cloud app microarchitecture.

Client—Server Architecture

AN
| e
U e
Client Internet o
nPresentation Logic| n Data Access Logic|
HAppIication Logic | n Data Storage |

FIGURE 5.14

Client—server app microarchitectures evenly split application functionality among clients and servers.

Many possibilities for partitioning the app

Servlet (Server + Client)

Presentation Logic |

EApplication Logic |
nData Access Logic |

nData Storage |

Peer

FIGURE 5.15

Peer-to-Peer Architecture

R o u{j U
Int&rnet Servlet (Server + Client) Cllent

Servlet (Server + Client)
1
2
‘

Servlet (Server + Client)

Yoo sooe |

Peer

Peer

1

—_ Server
Three-tier Client-Server :
Architecture - ~

\\/_\q

(f‘/ e \\’A\V _, /_j

C HAppIication Logic v
A\ Internet
Internet

wiin

nPresentation Logic |

Data Access Logic
Data Storage

-~

Peer

FIGURE 5.16

Peer-to-peer app microarchitecture.

Server

Data Access Logic

n Data Storage

Tiering.

App architecture choices have conseqguences

* Hard, or, impossible to maximize all positive consequences; always trade-
offs between partitioning inside the platform and across the Internet

 Early architecture choices are hard to change later
e -> creating path dependencies in architectures

* Some characteristics show up immediately:
* speed, security, reliability, scalability, testability, and usability

* Some at later stages:

* maintainability, extensibility, evolvability, and the capacity to mutate and envelop
adjacent app market segments

* Developers need knowledge about which types of app architectures gives
which types of trade-offs and advantages

* ->design, not experience too late

Platform architecture

* In practice, irreversible
* -> have to stick with early choices and their consequences

* Desirable properties

* Simple; defined interfaces, functionlity etc.
Resilient; not breaking the ecosystem upon app failure
Maintainable; minimizing consequences of local changes

Evolvable; balancing between stability/control of interfaces and autonomy of
Innovation

But also here, trade-offs.

More on modularization and amount of
modularity

* Monolithic versus modular

* Not either or — rather a continuum between the two extremes, where
most lies in between

 Some important aspects:
* Division of work among several organizations/actors

* Emergent properties
* Dependencies among modules is restricted to defined interfaces

* Need to be compliant only to interface specifications
* Possible performance sacrifications

Balancing needs and implications

Table 5.2 Upsides of Modularizing a Platform for Platform Owners and App Developers

Platform Owner App Developer

Massively distributed innovation Less reinvention, more specialization
Increased variety of apps Valuable ignorance

Greater volume of incremental innovation Greater app evolvability

Control via architecture rather than ownership Multihoming in rival platforms more feasible

Table 5.3 Downsides of Modularizing a Platform for Platform Owners and App Developers

Platform Owner App Developer

Modularity is not free Modularity imposes additional costs

Technical performance takes a hit App performance takes a hit

Modularization forecloses architectural innovation Modularity constrains experimentation

Increased risk of imitation by rivals Leveraging the platform risks getting locked into it

Balancing needs and implications

High Mon,

Low

Immediate Future
Performance Evolvability

FIGURE 5.18

Tradeoffs between modular and monolithic platform architectures.

What is in, what is out?

* High-reusability functionality

e Generic functionality

 Stable functionality

* Interfaces integral parts of the platform

* High uncertainty functionality — out

e But also in:

* For attractiveness
e Expectation from end-users

The interfaces

e Standardization
e Stability

* Versatility
* flexibility in standards
* highly dependent functionality stays in the platform

* Openness
* who can participate

DHIS2 as a platform ecosystem?

 How do your developed apps relate to platform architectures as
described?

* Do the architectural choices in your app (together with the DHIS2)
imply anything for further development and evolvement of your app,
and in relation to the DHIS2 core

* Dependencies — loose coupling

* Modularization

* Usage of APIs

* Placement of functionality and layers

Platform vs application vs Information
infrastructure

Table 1 Applications, platforms and information infrastructures

Property/Type of IT system

Application

Platform

Information infrastructure

Emergent properties
Shared

Open

ogeneous

Y | t=|ai: 4 ¥ | W&

Control

Yes, locally and through
specified functions

No, closed by user group
and functionality

Yes, partially and mainly
by involved social groups

Yes, but limited by time
horizon and user community.
Linear growth

Evolution bounded and

context free

Direct composition of IT
capabilities within a
homogeneous platform

Centralized

Yes, across involved user
communities and across a
set of IT capabilities

Partially, depends on design
choices and managerial policies

Partially, mainly by social
groups but also by technical

connections

Yes, and limited by architectural
choices and functional closure

Mostly linear growth

Evolution path dependent

Direct composition of a set of
horizontal IT capabilities
within a set of homogeneous
platforms

Centralized

Yes, universally and across multiple IT capabilities
(Star and Ruhleder, 1996; Porra, 1999)

Yes, universally allowing unlimited connections to
user communities and new IT capabilities (Weill and
Broadbent, 1998; Kayworth and Sambamurthy, 2000;
Freeman, 2007)

Yes, increasingly heterogeneous both technically and socially
(Kling and Scacchi, 1982; Hughes, 1987; Kling, 1992;
Edwards et al., 2007)

Yes, unlimited by time or user community (Star and Ruhleder,
1996; Freeman, 2007; Zimmerman, 2007)

Both linear and nonlinear growth (Hughes, 1987)

Evolution path dependent (Star and Ruhleder, 1996; Porra,
1999; Edwards et al., 2007)

Recursive composition of IT capabilities, platforms and
infrastructures over time (Star and Ruhleder, 1996;
Edwards et al., 2007)

Distributed and dynamically negotiated (Weill and
Broadbent, 1998)

Can involve only basisorganizing principles (standards)
and rely on installed base inertia (Star and Ruhleder, 1996;
Edwards et al., 2007).

