INF5750

Summary

University of Oslo
Department of Informatics

Outline

e Summary of key topics
e REST architecture
e Free and Open Source Software
e Software Platform Ecosystems
e Linking theory and practice

e Practical info on exam and project presentation

REST

REpresentational State
Transfer

REST is an architectural style
Defined by a set of architectural constraints
These guided the development of HTTP

HTTP is a standard, REST is not

REST architectural
constraints

replicated

uniform interface

U

simple
visible

reusable

Source: Fielding and Taylor (2002)

REST constraints

Addressability - all resources have a unique and stable identifier

Uniform interface - a uniform interface with a small set of
standard methods support all interactions

Stateless interactions - each session is for a single interaction,
and session state is not stored by server

Self-describing messages - interaction happens though requests
and response message that contain both data and metadata

Hypermedia - resources include links to related resources,
enabling decentralised discovery

REST elements

Data element Example

resource link to Web service

resource identifier URL

. HTML document, XML document,
representation

image file
representation metadata media type, last-modified
resource metadata source link, alternates

control data cache-control

Resources

Resources are the key information elements in REST

Any information that can be named can be a resource - image, service,
document

Resources refer to conceptual mappings, not particular entities or values
Abstract definition of resources enables:
e generality - information is not divided by type, implementation

e |ate binding to representation - representation (format) can be decided
based on request

e we can refer/link to (persistent) concepts rather than specific instances
of a concept

Resource identifiers

e Each resource needs an identifier

e |dentifier is defined by the "author" of the resource, not
centralised

Representations

Resources are not transferred between components in the
architecture, but representations of resources

Representations consists of both data and metadata
describing the data

Resource metadata provide information about the
resource not specific to the representation

Control data provides information about the message,
such as for caching

REST and RESTful

e REST is an architectural style

o RESTful web services are used to describe web services
designed according to the REST style

e "RESTful Web services are software services which are
published on the Web, taking full advantage and making
correct use of the HTTP protocol”

Maturity of RESTful WS

e Whether a web service is RESTful is not either or

e Can be seen as a maturity model with levels of adherence
to the REST architecture

Level O - HTTP as a tunnel
Level 1 - Use of multiple identifiers and resources
Level 2 - Proper use of uniform resource interface and verbs

Level 3 - Use of hypermedia to model relationships

"Big" Web Services

e Traditional (hon-RESTful) web services are often called
"big" web services

e Commonly based on using two standards:

e WSDL (Web Services Description Language) - XML
format for describing/defining the web service

e SOAP - XML format for communication

"Big" web services

Based on interacting with services e.g. through remote
procedure calls (RPCs)

All operations are typically POSTed to one/few endpoint(s)

Operations to be performed is based on content of SOAP
(or similar) message rather than an HTTP verb

Extensions to SOAP for specific functionality - WS-
Security, WS-Policy, WS-Addressing etc

RESTful vs other WS

® WS-+ Representations

® REST

Many Message Formats
(XML, JSON, ATOM, HTML, CSV, ...)

% 1 Message Format (SOAP)
1 Communication

“Endpoint”

4 HTTP Verbs

Many URIs (GET, PUT, POST, DEL

Many Operations (WSDL) Interface
Resources

Open Source

FOSS

Software is created by an author and is subject to
copyright

A license is needed for software to be used by others

The term open source coined by Open Source Initiative
(OSI), established in 1999

OSI has a list of 10 criteria for OSS to comply with

OSI Criteria for OSS

1. Free redistribution

2. Source code available

3. Derived works allowed

4. Integrity of author’s source code allowed

5. No discriminations against persons or groups
6. No discrimination against fields of endeavour
7. Distribution of license

8. License must not be specific to product

9. License must not restrict other software

10. License must be technology neutral

Free vs Open

Philosophical differences between free and open

Free software refer to freedom, not cost - "free speech”,
not "free beer"

Based on promoting social solidarity and sharing
Free software meet the 10 criteria for open source

Practical difference: free licenses (e.g. GPL) require
derivative work to be open source

Models for production of
software

1. Managerial command systems - firms and organisations
with "lines of command”

2. Markets - transaction costs define the production

3. Commons Based Peer Production

e OSS can follow any of the models, but peer production is
perhaps the "typical” example

The open source approach

e Feller and Fitzgerald (2002) analyses the OSS
development approach along 5 dimensions:

What, Why, When and Where, How, Who

e Fitzgerald (2006) argues that open source is transforming
from its "free software" origins to a more mainstream and
commercially viable approach

What

e OSS is defined by adherence to the OSI definition

e Dominated by operating and networking system software, development
tools and infrastructural component

e Examples:
e Linux operating system
e Apache web server
e Perl, Python programming languages
e V8 javascript engine

e React, Angular, Vue, Ember++ javascript frameworks

Why

e Three levels of motivations for open source software:
e Technical
e Economic

e Socio-political

Why - technical and
economical motivation

e OSS seen as having potential to address "Software crisis” -
software taking too long to develop, not working well when
delivered, and costing too much

* Speed - OSS characterised by short development cycles.
"Adding manpower to a late software project makes it
later” vs "given enough eye-balls, every bug looks
shallow”.

e Quality - peer review of source code. Some argue OSS
devs are among the most talented and motivated.

e Cost - shared costs and shared risks of development.

Why - socio-technical
motivation

Motivation of individual developers often socio-technical

Studies point to "rush” of being able to produce
something that get feedback and is used by others

Meritocracy, where quality of code speaks for itself

Arena for demonstrating skills for potential employers

Different in OSS projects where developers are paid

When and Where

e Decentralised geographically - distribution of work

e Rapid evolution with frequent, incremental releases

How

e Classic (early) example:

e One single or a small group of developers establishes a
project and its direction

e Other developers submit patches to fix bugs or add
functionality

e Examples: apache web server, fetchmail, emacs

How

e |ncreasingly (OSS 2.0):

e Companies establish OSS projects as part of a purposeful
strategy

* Developers are paid to contribute
e Examples:

* React and Angular largely developed by Facebook and
Google

* Linux kernel top 10 contributors include Intel, Red Hat,
Samsung, IBM

How - forks

e Often no written rules within open source projects -
customs and taboos must be learned by experience

* The right to fork is central to OSS - making a copy of the
source code which is then developed separately

e However, forking can be seen as bad practice

Who

e Three key stakeholders on OSS development:

e |ndividual developers - often perceived as "hobbyists”,
but in reality often full-time developers

e Companies supporting development and distribution

e Users - experts and early adopters, often the same
people who contribute to open source projects

Business models

Business model: how an organisation creates value

Major organisations base their business on OSS - Red
Hat, SUSE, Canonical, Apache Foundation, Mozilla, eZ
System

Other organisations use OSS without having it as a main
business - IBM, Google, Apple, Oracle

Different business models apply to open source software

Process

FOSS

0SS 2.0

Development

* Planning—"an itch worth scratching”

Planning—purposive strategies by major

specialized software firms

Life Cycle « Analysis—part of conventional agreed-upon players trying to gain competitive advantage
knowledge in software development Analysis and design—more complex in spread
» Design—firmly based on principles of modularity to to vertical domains where business require-
accomplish separation of concerns ments not universally understood
» Implementation Implementation subphases as with FOSS, but
o Code the overall development process becomes /ess
o Review bazaar-like
o Pre-commit test Increasingly, developers being paid to work on
o Development release open source
o Parallel Debugging
o Production Release
(often the planning, analysis, and design phases are
done by one person/core group who serve as “a tail-
light to follow” in the bazaar)
Product + Horizontal infrastructure (operating systems, More visible IS applications in vertical domains
Domains utilities, compilers, DBMS, web and print servers)
- Primary Value-added service-enabling Value-added service enabling
Business Loss-leader/market-creating o Bootstrapping
Strategies Market-creating
o Loss-leader
o Dual product/licensing
o Cost reduction
o Accessorizing
Leveraging community development
Leveraging the open source brand
Product * Fairly haphazard—much reliance on e-mail Customers willing to pay for a professional,
Support lists/bulletin boards, or on support provided by whole-product approach

Intellectual Property

e Intellectual property:

* "Non-physical property that is the product of original thought”.
Stanford Encyclopaedia of Philosophy

o "[IP] refers to creations of the intellect for which a monopoly is

assigned to designated owners by law".
Wikipedia

* |ntellectual property rights do not address the abstract idea, but
the physical manifestation or expression of ideas

 Covered by international treaties (e.g. Bern convention from
1886) and national law in most of the world, but laws differ

IPR protection

e Protection of IPR are mainly through:

e Copyrights j

o Patents

e Jrade secrets

e Trademarks

Copyrights and Patents

e Patents and copyrights are the main instruments of IPR
law

e History and purpose are different:

e Patents are issued by authorities to regulate use of
inventions and ideas for commercial uses

 Copyrights applies to the expression of works like
printed material, sound recordings, software - not ideas

Balancing act

protecting rights of
author/inventor to

. making works and
, | inventions available |
P 0 PRS0 aiaae Fo et 2 {c the henefit of the

iety ben Pore]

Licensing

e |PR grant rights to authors of their work - including
authors of software

e Providing content without license information is legal, but
can create confusion

e Jo use intellectual property written by someone else a
license is required - including for software in binary or
source code format

Software licenses

Rights in Copyright

Protective
FOSS License

relinquished more rights granted more rights retained retained

Source: Mark Webbink

Restrictive vs Permissive

e Permissive licenses allow distribution of source code, but
only require attribution - "minimal restrictions on future
behaviour" (FreeBSD)

* Restrictive (copyleft) licenses require source code to be
distributed along with binary code - aim to keep software

free in the future

Free vs Open

Goes back to philosophical differences between free and
open

Free software refers to freedom, not cost - "free speech”, not
"free beer"

Based on promoting social solidarity and sharing
Free software meets the 10 criteria for open source

Open source software does not necessarily adhere to the
requirement of free software licenses (e.g. GPL) that require
derivative work to also be open source

Restrictive licenses

e \Weak restrictive/copyleft license:

e |f software with weak copyleft is used that module/
library’s source code must be distributed/made
available

e Strong restrictive/copyleft license:

e |f software with strong copyleft is used the entire
software’s source code must be distributed/made
available

Viral licenses

e Strong copyleft is viral

i ur*“§o re

L* - ’

Distributing OSS

e Requirement to distribute source code in open source
licenses is linked to distribution of object/binary code

e |nternal modification and use of OSS software does not
usually trigger requirement to publish modified code

e Businesses may (should) have a list of accepted OSS
licenses and used OSS modules - example

https://www.apache.org/legal/resolved.html

License violations

Automated tools can be used for detecting licensing
iIssues

Review of source code (including licenses) would typically
be part of "due diligence" in the sale of a company

With violations of open source (copyleft) licenses, you
could be taken to court and forced to release the source
code

Topic of research, e.g. We et al (2017) on inconsistencies
of licensing within OSS projects

https://link.springer.com/article/10.1007/s10664-016-9487-8

Software Platform
Ecosystems

What are platforms?

Platforms where third party complementors add to platform capabilities
and functionality

Possibilities for hundreds or thousands of actors to add functionality to
the same ecosystem

End users can uniquely mix-and-match "downstream complements” -
iInnovation and adoption in the downstream central for success of failure

True platforms must be at least two-sided - spanning at least app
developers and end-users that interact through the platform

Most successful platforms began as standalone products or services:
I0S, Windows, Facebook, Amazon, eBay, Google, Firefox, Salesforce,
and Dropbox

Core elements

--

0
*
*
R
0

0
o,
‘0
.

Environment

--

.
*
*
R
0

0
,
‘0
.

““““
R -
*
R
0

Shared Infrastructure

Interfaces

Q
0

e, o
v, o
» o
» 0
e, tad
..

End-Users

Drivers towards
platformization

Competitors

Many

Few

Platform lifecycle

Many Alternative
Designs

0

o L

T
®

Dominant Design Emerges

Dominant Design
Pervasive

Pre-dominant Design

Post-dominant Design

Ascent

Introduction

Y

S-curve Jumping

Maturity

Decline

Original
Technology
/ Solution

Successor
Technology
Solution

> Time

R&D

Guiding principles

Table 2.3 Summary of the Nine Guiding Principles in Platform Markets

Principle

Red Queen effect

Key Idea

The increased pressure to adapt faster just to survive is driven by an increase in the
evolutionary pace of rival technology solutions

Chicken-or-egg

The dilemma that neither side will find a two-sided technology solution with potential

problem network effects attractive enough to join without a large presence of the other side
The penguin When potential adopters of a platform with potentially strong network effects stall in
problem adopting it because they are unsure whether others will adopt it as well

Emergence Properties of a platform that arise spontaneously as its participants pursue their own

interests based on their own expertise but adapt to what other ecosystem participants
are doing

Seesaw problem

The challenge of managing the delicate balance between app developers’ autonomy to
freely innovate and ensuring that apps seamlessly interoperate with the platform

Humpty Dumpty
problem

When separating an app from the platform makes it difficult to subsequently reintegrate
them

Mirroring principle

The organizational structure of a platform’s ecosystem must mirror its architecture

Coevolution

Simultaneously adjusting architecture and governance of a platform or an app to
maintain alignment between them

Goldilocks rule

Humans gravitate toward the middle over the two extreme choices given any three
ordered choices

Architecture

Platform architecture enable third parties to participate in the

platform ecosystem

Important to manage complexity

Three main components: platform core, interfaces, apps

Overall: stable core and dynamic apps

Architecture should enable:
e Partitioning/modularization

e System integration

Platform
Architecture

Ecosystem
Architecture

App Microarchitecture

Platform architecture

e Path dependent - in practice irreversible

r nAIAIAA:IAAI AA* IAAL llllll LIAA AI:“AIJAIA* AIAa:l‘AIAIA nnnnnn *:Aﬁl
: e
High Monc, e
lthlc Arch' d\.)\a(o
. Intermediate .
Low
Immediate Future

Performance Evolvability

App (micro)architecture

e Partitioning of functionality between app and platform
e Path dependent - difficult to change

e Some characteristics of different solutions
are visible immediately, others long-term

App-based Platform-based

0% 50% 100%

Standalone —

— Cloud (Host-based) Architecture
O\
™ — = (ff\ e (=
C, Nj — | : X :
\\/\/\/\“/ \4 N~
Client Internet _
Server Client Internet
nPresentation Logic| (Dumb Terminal) Server
nPresentation Logicl
nAppIication Logic |
Application Logic
nData Access Logic| n PP 9 |
Data Access Logic
nData Storage | n g |
nData Storage |
Client-based Architecture . .
(' Client—Server Architecture -
-
s - —
. (M = / X*\f\ﬁ (—
¢ 0] —
NN C /j
: Internet R\~
Client
Server . Internet
Client
nPresentation Logicl n Data Storage Server
— , nPresentation '—09i0| H Data Access Logic|
EAppllcatlon Logic |
Application Logic Data Storage
HData Access Logic | E PP 9 | n 9 |

UG Server

Servlet (Server + Client)

2

i i
Servlet (Server + Client) ata Storage

l : (
nPresentation Logic| ~ A Peer <

k/\/\/\—

C =
Application Logic \1 d [= N— ~ t
- . o~ Client nterne
Intdrnet Serviet (Server + Client) ien
nData Access Logic |

Peer-to-Peer Architecture . .
Three-tier Client-Server
Architecture

ANA

nAppIication Logic

Internet

nPresentation Logic |

y A Application Logi

nData Storage |

_\ _aa \ccess Logic
— 05—
Servlet (Server + Client) Peel‘
1 Server
n Data Access Logic
- n Data Storage
Peer

Theory and Practice

Ecosystem

Interface

Ecosystem

RESTful API

App-based Platform-based

Ecosystem

RESTful API

App-based Platform-based

Exam and
Presentation

Exam

December 1 at 2:30 PM, Silurveien 2, Sal 3B

4 hour written digital exam
Similar in style to exam from 2016

Questions from curriculum, with some links to group
projects

https://www.uio.no/studier/emner/matnat/ifi/INF5750/h17/eksamen/index.html

Group presentations

6 and 7 December - let me know by emall if one of the
days are impossible

Each group have strictly 20 minutes to present
More on what the presentation should include here

Make your repositories public the day before presenting

https://wiki.uio.no/mn/ifi/inf5750/index.php/Main_Page#Final_presentation

