
INF5750
Summary

University of Oslo
Department of Informatics

Outline
• Summary of key topics

• REST architecture

• Free and Open Source Software

• Software Platform Ecosystems

• Linking theory and practice

• Practical info on exam and project presentation

REST

REpresentational State
Transfer

• REST is an architectural style

• Defined by a set of architectural constraints

• These guided the development of HTTP

• HTTP is a standard, REST is not

REST architectural
constraints

120 • R. T. Fielding and R. N. Taylor

Fig. 1. REST derivation by style constraints.

ease the deployment of architectural elements in a partial, iterative fashion,
since it is not possible to force deployment in an orderly manner.

2.5 Evolving Requirements
Each of these project goals and information system characteristics fed into the
design of the Web’s architecture. As the Web has matured, additional goals have
been added to support greater collaboration and distributed authoring [Fielding
et al. 1998]. The introduction of each new goal presents us with a challenge:
how do we introduce a new set of functionality to an architecture that is already
widely deployed, and how do we ensure that its introduction does not adversely
impact, or even destroy, the architectural properties that have enabled the Web
to succeed? These questions motivated our development of the REST architec-
tural style.

3. DERIVING REST AS A HYBRID ARCHITECTURAL STYLE
The REST architectural style consists of a set of architectural constraints cho-
sen for the properties they induce on candidate architectures. Although each
of these constraints can be considered in isolation, describing them in terms
of their derivation from common architectural styles makes it easier to un-
derstand the rationale behind their selection. Figure 1 depicts the derivation
of REST’s constraints graphically in terms of the network-based architectural
styles examined in Fielding [2000]. The relevant base styles from which REST
was derived include replicated repository (RR), cache ($), client-server (CS), lay-
ered system (LS), stateless (S), virtual machine (VM), code on demand (COD),
and uniform interface (U).

The null style is simply an empty set of constraints. From an architectural
perspective, the null style describes a system in which there are no distin-
guished boundaries between components. It is the starting point for our de-
scription of REST.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

Source: Fielding and Taylor (2002)

REST constraints
• Addressability - all resources have a unique and stable identifier

• Uniform interface - a uniform interface with a small set of
standard methods support all interactions

• Stateless interactions - each session is for a single interaction,
and session state is not stored by server

• Self-describing messages - interaction happens though requests
and response message that contain both data and metadata

• Hypermedia - resources include links to related resources,
enabling decentralised discovery

REST elements
Data element Example

resource link to Web service

resource identifier URL

representation HTML document, XML document,
image file

representation metadata media type, last-modified

resource metadata source link, alternates

control data cache-control

Resources
• Resources are the key information elements in REST

• Any information that can be named can be a resource - image, service,
document

• Resources refer to conceptual mappings, not particular entities or values

• Abstract definition of resources enables:

• generality - information is not divided by type, implementation

• late binding to representation - representation (format) can be decided
based on request

• we can refer/link to (persistent) concepts rather than specific instances
of a concept

Resource identifiers

• Each resource needs an identifier

• Identifier is defined by the "author" of the resource, not
centralised

Representations
• Resources are not transferred between components in the

architecture, but representations of resources

• Representations consists of both data and metadata
describing the data

• Resource metadata provide information about the
resource not specific to the representation

• Control data provides information about the message,
such as for caching

REST and RESTful

• REST is an architectural style

• RESTful web services are used to describe web services
designed according to the REST style

• "RESTful Web services are software services which are
published on the Web, taking full advantage and making
correct use of the HTTP protocol"

Maturity of RESTful WS
• Whether a web service is RESTful is not either or

• Can be seen as a maturity model with levels of adherence
to the REST architecture

Level 0 - HTTP as a tunnel

Level 1 - Use of multiple identifiers and resources

Level 2 - Proper use of uniform resource interface and verbs

Level 3 - Use of hypermedia to model relationships

"Big" Web Services

• Traditional (non-RESTful) web services are often called
"big" web services

• Commonly based on using two standards:

• WSDL (Web Services Description Language) - XML
format for describing/defining the web service

• SOAP - XML format for communication

"Big" web services

• Based on interacting with services e.g. through remote
procedure calls (RPCs)

• All operations are typically POSTed to one/few endpoint(s)

• Operations to be performed is based on content of SOAP
(or similar) message rather than an HTTP verb

• Extensions to SOAP for specific functionality - WS-
Security, WS-Policy, WS-Addressing etc

RESTful vs other WS
36 C. Pautasso

Fig. 2.1 Design space: RESTful web services versus WS-* web services

HTTP resources but may be used to access the same service through alternative
communication mechanisms.

The third axis is not directly reflected in the maturity model but is also important
for understanding the difference between the two technology stacks, one having a
foundation in the SOAP protocol and the XML format, while the other leaves open
the choice of which message format should be used (shown on the representations
axis) so that clients and services can negotiate the most suitable format to achieve
interoperability.

2.3 Example

As inspiration for this example we use the Doodle REST API, which gives program-
matic access to the Doodle poll Web service available at (http://www.doodle.ch).
Doodle is a very popular service, which allows to minimize the number of emails
exchanged in order to find an agreement among a set of people. The service allows to
initiate polls by configuring a set of options (which can be a set of dates for scheduling
a meeting, but can also be a set of arbitrary strings). The link to the poll is then mailed
out to the participants, who are invited to answer the poll by selecting the preferred
options. The current state of the poll can be polled at any time by the initiator, who
will typically inform the participants of the outcome with a second email message.

The Simple Doodle REST API (Fig. 2.2) publishes two kinds of resources: polls
(a set of options once can choose from) and votes (choices of people within a
given poll). There is a natural containment relationship between the two kinds
of resources, which fits naturally into the convention to use / as a path separa-
tor in URIs. Thus the service publishes a /poll root resource, which contains a
set of /poll/{id} poll instances, which include the corresponding set of votes
/poll/{id}/vote/{id}.

Open Source

FOSS

• Software is created by an author and is subject to
copyright

• A license is needed for software to be used by others

• The term open source coined by Open Source Initiative
(OSI), established in 1999

• OSI has a list of 10 criteria for OSS to comply with

OSI Criteria for OSS
1. Free redistribution

2. Source code available

3. Derived works allowed

4. Integrity of author’s source code allowed

5. No discriminations against persons or groups

6. No discrimination against fields of endeavour

7. Distribution of license

8. License must not be specific to product

9. License must not restrict other software

10. License must be technology neutral

Free vs Open
• Philosophical differences between free and open

• Free software refer to freedom, not cost - "free speech",
not "free beer"

• Based on promoting social solidarity and sharing

• Free software meet the 10 criteria for open source

• Practical difference: free licenses (e.g. GPL) require
derivative work to be open source

Models for production of
software

1. Managerial command systems - firms and organisations
with "lines of command"

2. Markets - transaction costs define the production

3. Commons Based Peer Production

• OSS can follow any of the models, but peer production is
perhaps the "typical" example

The open source approach

• Feller and Fitzgerald (2002) analyses the OSS
development approach along 5 dimensions:  
 
What, Why, When and Where, How, Who

• Fitzgerald (2006) argues that open source is transforming
from its "free software" origins to a more mainstream and
commercially viable approach

What
• OSS is defined by adherence to the OSI definition

• Dominated by operating and networking system software, development
tools and infrastructural component

• Examples:

• Linux operating system

• Apache web server

• Perl, Python programming languages

• V8 javascript engine

• React, Angular, Vue, Ember++ javascript frameworks

Why

• Three levels of motivations for open source software:

• Technical

• Economic

• Socio-political

Why - technical and
economical motivation

• OSS seen as having potential to address "Software crisis" -
software taking too long to develop, not working well when
delivered, and costing too much

• Speed - OSS characterised by short development cycles.
"Adding manpower to a late software project makes it
later" vs "given enough eye-balls, every bug looks
shallow".

• Quality - peer review of source code. Some argue OSS
devs are among the most talented and motivated.

• Cost - shared costs and shared risks of development.

Why - socio-technical
motivation

• Motivation of individual developers often socio-technical

• Studies point to "rush" of being able to produce
something that get feedback and is used by others

• Meritocracy, where quality of code speaks for itself

• Arena for demonstrating skills for potential employers

• Different in OSS projects where developers are paid

When and Where

• Decentralised geographically - distribution of work

• Rapid evolution with frequent, incremental releases

How

• Classic (early) example:

• One single or a small group of developers establishes a
project and its direction

• Other developers submit patches to fix bugs or add
functionality

• Examples: apache web server, fetchmail, emacs

How
• Increasingly (OSS 2.0):

• Companies establish OSS projects as part of a purposeful
strategy

• Developers are paid to contribute

• Examples:

• React and Angular largely developed by Facebook and
Google

• Linux kernel top 10 contributors include Intel, Red Hat,
Samsung, IBM

How - forks

• Often no written rules within open source projects -
customs and taboos must be learned by experience

• The right to fork is central to OSS - making a copy of the
source code which is then developed separately

• However, forking can be seen as bad practice

Who

• Three key stakeholders on OSS development:

• Individual developers - often perceived as "hobbyists",
but in reality often full-time developers

• Companies supporting development and distribution

• Users - experts and early adopters, often the same
people who contribute to open source projects

Business models

• Business model: how an organisation creates value

• Major organisations base their business on OSS - Red
Hat, SUSE, Canonical, Apache Foundation, Mozilla, eZ
System

• Other organisations use OSS without having it as a main
business - IBM, Google, Apple, Oracle

• Different business models apply to open source software

 Fitzgerald/Transformation of Open Source Software

 Table 1. Characterizing FOSS and OSS 2.0 I
 Process FOSS OSS 2.0

 Development Planning?"an itch worth scratching" Planning?purposive strategies by major
 Life Cycle Analysis?part of conventional agreed-upon players trying to gain competitive advantage

 knowledge in software development Analysis and design?more complex in spread
 Design?firmly based on principles of modularity to to vertical domains where business require
 accomplish separation of concerns ments not universally understood

 Implementation Implementation subphases as with FOSS, but
 o Code the overall development process becomes less
 o Review bazaar-like

 o Pre-commit test Increasingly, developers being paid to work on
 o Development release open source
 o Parallel Debugging
 o Production Release

 (often the planning, analysis, and design phases are
 done by one person/core group who serve as "a tail
 light to follow" in the bazaar)

 Product Horizontal infrastructure (operating systems, More visible IS applications in vertical domains
 Domains utilities, compilers, DBMS, web and print servers)
 Primary Value-added service-enabling Value-added service enabling
 Business Loss-leader/market-creating o Bootstrapping

 Strategies Market-creating
 o Loss-leader
 ? Dual product/licensing
 o Cost reduction
 o Accessorizing
 Leveraging community development
 Leveraging the open source brand

 Product Fairly haphazard?much reliance on e-mail Customers willing to pay for a professional,
 Support lists/bulletin boards, or on support provided by whole-product approach

 specialized software firms

 Licensing GPL, LGPL, Artistic License, BSD, and emergence Plethora of licenses (85 to date validated by
 of commercially oriented MPL OSI or FSF)
 Viral term used in relation to licenses Reciprocal term used in relation to licenses

 system configurations ensures bugs are found and fixed
 quickly.

 Production release: a relatively stable, debugged produc
 tion version of the system is released

 The management of this process varies a great deal. Different
 projects have varying degrees of formalism as to how deci
 sions are made, but the principle of "having a tail-light to
 follow" (Bezroukov 1999) captures the spirit well. Often, the
 initial project founder or small core group make the key
 decisions in accordance with the process outlined in the life
 cycle above.

 FOSS Product Domains

 Due to the globally distributed nature of the development
 community (most members never meet face-to-face), FOSS
 products have tended to be infrastructural systems in hori
 zontal domains. Their requirements are part of the general
 taken-for-granted wisdom of the software development com

 munity. Thus, the most successful FOSS products?the
 Linux operating system, the Apache web server, the Mozilla
 browser, the GNU C compiler, the Perl scripting language,
 and MySQL database management system?are all examples
 of horizontal infrastructure software.

 MIS Quarterly Vol. 30 No. 3/September 2006 589

This content downloaded from 193.157.236.90 on Wed, 26 Jul 2017 12:54:51 UTC
All use subject to http://about.jstor.org/terms

Intellectual Property
• Intellectual property:

• "Non-physical property that is the product of original thought".
Stanford Encyclopaedia of Philosophy

• "[IP] refers to creations of the intellect for which a monopoly is
assigned to designated owners by law".

Wikipedia

• Intellectual property rights do not address the abstract idea, but
the physical manifestation or expression of ideas

• Covered by international treaties (e.g. Bern convention from
1886) and national law in most of the world, but laws differ

IPR protection

• Protection of IPR are mainly through:

• Copyrights

• Patents

• Trade secrets

• Trademarks

Copyrights and Patents

• Patents and copyrights are the main instruments of IPR
law

• History and purpose are different:

• Patents are issued by authorities to regulate use of
inventions and ideas for commercial uses

• Copyrights applies to the expression of works like
printed material, sound recordings, software - not ideas

Balancing act

protecting rights of
author/inventor to

incentivise creation 

making works and
inventions available
to the benefit of the

public
• IPR law aims to strike balance between incentivising

creators and making sure society benefits from creations

Licensing

• IPR grant rights to authors of their work - including
authors of software

• Providing content without license information is legal, but
can create confusion

• To use intellectual property written by someone else a
license is required - including for software in binary or
source code format

Software licenses

Source: Mark Webbink

Restrictive vs Permissive

• Permissive licenses allow distribution of source code, but
only require attribution - "minimal restrictions on future
behaviour" (FreeBSD)

• Restrictive (copyleft) licenses require source code to be
distributed along with binary code - aim to keep software
free in the future

Free vs Open
• Goes back to philosophical differences between free and

open

• Free software refers to freedom, not cost - "free speech", not
"free beer"

• Based on promoting social solidarity and sharing

• Free software meets the 10 criteria for open source

• Open source software does not necessarily adhere to the
requirement of free software licenses (e.g. GPL) that require
derivative work to also be open source

Restrictive licenses
• Weak restrictive/copyleft license:

• If software with weak copyleft is used that module/
library’s source code must be distributed/made
available

• Strong restrictive/copyleft license:

• If software with strong copyleft is used the entire
software’s source code must be distributed/made
available

Viral licenses

• Strong copyleft is viral

• When used they force the entire application to be
released under strong copyleft license

OSS can be viral

Distributing OSS

• Requirement to distribute source code in open source
licenses is linked to distribution of object/binary code

• Internal modification and use of OSS software does not
usually trigger requirement to publish modified code

• Businesses may (should) have a list of accepted OSS
licenses and used OSS modules - example

https://www.apache.org/legal/resolved.html

License violations
• Automated tools can be used for detecting licensing

issues

• Review of source code (including licenses) would typically
be part of "due diligence" in the sale of a company

• With violations of open source (copyleft) licenses, you
could be taken to court and forced to release the source
code

• Topic of research, e.g. We et al (2017) on inconsistencies
of licensing within OSS projects

https://link.springer.com/article/10.1007/s10664-016-9487-8

Software Platform
Ecosystems

What are platforms?
• Platforms where third party complementors add to platform capabilities

and functionality

• Possibilities for hundreds or thousands of actors to add functionality to
the same ecosystem

• End users can uniquely mix-and-match "downstream complements" –
innovation and adoption in the downstream central for success of failure

• True platforms must be at least two-sided - spanning at least app
developers and end-users that interact through the platform

• Most successful platforms began as standalone products or services:
iOS, Windows, Facebook, Amazon, eBay, Google, Firefox, Salesforce,
and Dropbox

Core elements

subsystem or software service that connects to the platform to extend its functionality. Although such
complementary subsystems are often also called add-ons, plug-ins, modules, and extensions, here we
refer to such platform complements simply as apps and their developers as app developers. Apps are
complementary goods for platforms; platforms are functionally more desirable when there are a wide
variety of complements available to them. (Two products are complements when one increases the
attractiveness of the other; think of cookies and milk or a laptop and a Web browser.) For example,
Internet streaming boxes are more desirable when streaming content is widely available; smartphones
are more valuable when networks supporting them exist; Amazon’s Kindle is more valuable when pub-
lishers produce e-books. The platform therefore consists of the enabling core technologies and shared
infrastructure that apps can leverage. Apps access and build on the functionality of the platform through
a set of interfaces that allow them to communicate, interact, and interoperate with the platform. The
metaphor that science fiction fans can relate to is that the platform is like the Starship Enterprise and
apps are like the little shuttlecrafts that dock into its myriad ports. The collection of the platform and
apps that interoperate with it represents the platform’s ecosystem. A platform ecosystem therefore
meets the criteria for defining a complex system; one comprised of numerous interacting subsystems
(Simon, 1962). Table 1.1 summarizes these core elements of a platform ecosystem.

Outside of these central elements of a platform ecosystem are three other contextual features:
end-users, rival platform ecosystems, and the competitive environment in which they exist. End-users
are the collection of existing and prospective adopters of the platform. The characteristics and diversity
of this market evolves over time and as industries converge and split. A platform ecosystem exists within
a larger competitive environment, often competing with other rival platform ecosystems. Such rival plat-
form ecosystems constantly compete for both users and app developers. For example, Apple’s iOS com-
petes with Google’s Android, Blackberry, Nokia’s Symbian, and Microsoft’s mobile platforms. The
competition within this environment is rarely directly among the platforms themselves but rather among
competing ecosystems. The more intense this competition, the more important a platform’s evolution
becomes for surviving and thriving. A vibrant and dynamic ecosystem is therefore key to the survival of
any software platform, and increasingly of products and services as theymorph into platforms or become
subservient complements of another platform.

Platform

Apps Apps Apps Apps

Ecosystem

Interfaces

Competing Ecosystem

Environment Competing Ecosystem

Shared Infrastructure

End-Users

FIGURE 1.1

Elements of a platform ecosystem.

6 CHAPTER 1 The Rise of Platform Ecosystems

Drivers towards
platformization

Deepening
Specialization

Packetization

Internet of Things

Ubiquity

Software Embedding

Platform
Ecosystems

FIGURE 1.3

The five drivers of the migration toward platform-centric business models.

Table 1.3 Consequences of the Five Drivers Toward Platform-Centric Business Models

Driver Description Consequences

Deepening
specialization

Increased need for deep expertise due to
growing complexity of products and
services

• Simultaneously shrinking and expanding
firm boundaries

• Red Queen effect from
clockspeed compression

• Increased interdependence among firms

Packetization Digitization of “something”—an activity,
a process, a product, or a service—that
was previously not digitized

• Location-independent distribution ability
of work

• Deepening specialization

Software
embedding

Baking a routine business activity into
software

• Products-to-services transformation
• Morphing physical–digital boundary
• Convergence of adjacent industries

Internet of
Things

Everyday objects inexpensively gaining
the ability to directly talk using an Internet
protocol

• Deluge of data streams from
networked objects

• Context awareness

Ubiquity The growing omnipresence of cheap
and fast wireless Internet data networks

• Loosely coupled networks rival
efficiencies of firms

• Alters who can participate from where
• Alters where services can be delivered
• Scale without ownership

10 CHAPTER 1 The Rise of Platform Ecosystems

Platform lifecycle

Guiding principles
Table 2.3 Summary of the Nine Guiding Principles in Platform Markets

Principle Key Idea

Red Queen effect The increased pressure to adapt faster just to survive is driven by an increase in the
evolutionary pace of rival technology solutions

Chicken-or-egg
problem

The dilemma that neither side will find a two-sided technology solution with potential
network effects attractive enough to join without a large presence of the other side

The penguin
problem

When potential adopters of a platform with potentially strong network effects stall in
adopting it because they are unsure whether others will adopt it as well

Emergence Properties of a platform that arise spontaneously as its participants pursue their own
interests based on their own expertise but adapt to what other ecosystem participants
are doing

Seesaw problem The challenge of managing the delicate balance between app developers’ autonomy to
freely innovate and ensuring that apps seamlessly interoperate with the platform

Humpty Dumpty
problem

When separating an app from the platformmakes it difficult to subsequently reintegrate
them

Mirroring principle The organizational structure of a platform’s ecosystem must mirror its architecture

Coevolution Simultaneously adjusting architecture and governance of a platform or an app to
maintain alignment between them

Goldilocks rule Humans gravitate toward the middle over the two extreme choices given any three
ordered choices

FIGURE 2.14

Alice (middle) and the Red Queen (left).
Source: Charles Sylvester, Journeys Through Bookland, Bellows-Reeve Company, Chicago, 1909.

Startup

Design

Evolution

Architecture
• Platform architecture enable third parties to participate in the

platform ecosystem

• Important to manage complexity

• Three main components: platform core, interfaces, apps

• Overall: stable core and dynamic apps

• Architecture should enable:

• Partitioning/modularization

• System integration

Platform architecture

• Path dependent - in practice irreversible

• Balancing act between the different desirable properties:
simplicity, resilience, maintainability, evolvability

App (micro)architecture

• Partitioning of functionality between app and platform

• Path dependent - difficult to change

• Some characteristics of different solutions 
are visible immediately, others long-term

Theory and Practice

Ecosystem

Platform

Apps Apps Apps Apps Apps

Interface

Architecture

Ecosystem

Stock
viz MFL HIV

cascade
Sharing
settings

Subnat.
analysis

RESTful API

Ecosystem

Stock
viz MFL HIV

cascade
Sharing
settings

RESTful API

Exam and
Presentation

Exam

• December 1 at 2:30 PM, Silurveien 2, Sal 3B

• 4 hour written digital exam

• Similar in style to exam from 2016

• Questions from curriculum, with some links to group
projects

https://www.uio.no/studier/emner/matnat/ifi/INF5750/h17/eksamen/index.html

Group presentations

• 6 and 7 December - let me know by email if one of the
days are impossible

• Each group have strictly 20 minutes to present

• More on what the presentation should include here

• Make your repositories public the day before presenting

https://wiki.uio.no/mn/ifi/inf5750/index.php/Main_Page#Final_presentation

?

