
INF5750
Version control

University of Oslo 
Department of Informatics



Background

• Version control system essential when collaborating on 
code


• Use version control system both for individual 
assignments and group projects


• Git will be used in this course



Repository

• Where everything is stored


• Stores every change to any file that has been commited


• Administrative information is kept in hidden folder (for 
example .git)



Centralized vs distributed
Centralized 

Each developer works 
against one central repository

Distributed 

Each developer has a full local 
copy of the repository, and 
pushes changes from the local 
to the central repository



Centralized vs distributed
Centralized 

Each developer works 
against one central repository

Distributed 

Each developer has a full local 
copy of the repository, and 
pushes changes from the local 
to the central repository

Subversion (SVN), CVS++ Git, Bazaar++



Centralized vs distributed
• Advantages of distributed version control:


• Several smaller commits can be made privatly then 
pushed together as a whole


• Everything but pushing/pulling to central repository can 
be done offline


• Disadvantages of distributed version control:


• Repositories with large files or long history can become 
big 



src

index.html

app.js

style.css

Working tree

Staging area Working treeRepository

checkout



Working tree

Staging area/ 
index Working treeRepository

app.js
commit register

src

index.html

app.js

style.css



File status



Revisions

• Each commit creates a revision with a unique identifier


• Each revision refers to a state of a branch


• Revisions can be:


• checked out - creates a working tree with the state of 
the branch when it was commited


• reverted - undoing changes in that commit



Branches
• master is the original/main line of development - also a branch


• A branch is a copy of master which exists independently and 
is maintained separately - can later be merged


• Useful in several situations: 


• Large modifications which takes long time and affects other  
parts of the system (safety, flexibility, transparency) 


• Different versions for production and development


• Customised versions for different requirements



Master and branches

source: https://buddy.works

• Different workflows/philosophies exists - features 
branches, relsease branhces, development branches 



Conflicts

• A conflict occur if more than one developer modifes the 
same part of a file


• Git tries to auto-resolve conflicts


• Must be resolved manually if auto-resolve fails



Pull Requests
• Useful when working on repositories without permission to 

commit


• pull request - request that the maintainer of the repository 
pull and merge your changes


• Two models:


• fork repository - pull requests from private to central 
repository


• make branch in repository - pull requests from feature 
branch to master 



Good practice
• Update (fetch changes and merge) and test before 

commiting


• Update before editing


• Commit often - check changes before commiting


• Add source code and configuration files


• Don’t add generated files, libraries, IDE files etc



Resources

Git basics: 

http://rogerdudler.github.io/git-guide/


Git and GitHub at UiO:

http://www.uio.no/tjenester/it/maskin/filer/
versjonskontroll/github.html [norwegian]

https://github.uio.no

source: https://xkcd.com

http://rogerdudler.github.io/git-guide/
http://www.uio.no/tjenester/it/maskin/filer/versjonskontroll/github.html
http://www.uio.no/tjenester/it/maskin/filer/versjonskontroll/github.html
https://github.uio.no
https://xkcd.com

