INF5750

RESTful Web Services

Recording

e Audio from the lecture will be recorded!

 Will be put online if quality turns out OK

Outline

e REST
e HTTP

e RESTful web services

HITP

e Hypertext Transfer Protocol

e Application layer protocol - foundation for data
communication on the Web

Application

Transport

Internet

Ethernet Data link

HTTP development

e Work on HTTP protocol started in 1989
e HTTP/1.1 first released in 1997 - updated since
* Protocol for the Web, which meant it needed:
* Low entry-barrier to enable adoption => simple
* Preparedness for change over time => extensible
e Usability of hypermedia (links) => minimal network interactions

* Deployed on internet scale => built for unexpected load and
network changes

REST

"We needed a model for how [the Web] should
work. This idealised model of the interactions within
an overall Web application - [the REST]
architectural style - became the foundation for the
modern Web architecture]...]"

- Roy Fielding

REpresentational State
Transfer

REST is an architectural style
Defined by a set of architectural constraints
These guided the development of HTTP

HTTP is a standard, REST is not

REST Architectural
constraints

replicated

uniform interface

U

simple
visible

reusable

Source: Fielding and Taylor (2002)

Client-Server

e Client-server architecture
e Separation of concerns - interface from data storage
+ Simplifies the server component

+ Components can evolve separately

Client

- %

Figume 5-2. Client-Setver

Statelessness

Communication must be stateless:

e Each request must be self-descriptive

e Session state is kept by client

Improves visiblility, reliability and scalability

Decrease network performance due to repetitive data

Figume 5-3. Client-Stateless-Semver

a2
&y

Cacheable

e Clients and intermediaries can cache response

e Data within a response must be labeled cacheable (or not)

+ Improves network performance and reduces interaction

- Can decrease reliability

Figue 5-4. Client-Cache-Stateless-Server

Uniform interface

 There is a uniform interface for interacting with resources

e Four interface constraints:

e |dentification of resources

e manipulation of resources through representations

e self-descriptive messages

e hypermedia as the engine of application states

Uniform Interface

+ Decouples implementations from services that are
provided

+ Can decrease efficiency - information is transferred in a
standard format rather than optimised to the application

s

Client Connector: (3) Client+Cache: &) > Server Connector ({2 Serves+Cache: {3

Figue 5-6. Unifomra-Client-Cache-Stateless-Senver

Layered system

e T[he architecture can consist of hierarchical levels

e Components only communicate with their "neighbours”

+ Reduce system complexity

+ Intermediaries can improve efficiency

- Add overhead and latency C2

Clisnt Susuvactn. iy 3 ClimaCaclee, & > Server Coanector (T} SarvertCache: %3

Fogue 5-7. Mulfuie-Leypaal Cliv<C a3 labeles-Smva

Code-on-demand

e (Clients can download and execute code to extend
functionality

+ Simplifies clients and improves extensibility

- Reduces visibility

Client Connector () Client+Cache: & 0 Server Connector, L2 Serves+Cache: (02

Figue 5-3. REST

REST constraints

Addressability - all resources have a unique and stable identifier

Uniform interface - a uniform interface with a small set of
standard methods support all interactions

Stateless interactions - each session is for a single interaction,
and session state is not stored by server

Self-describing messages - interaction happens though requests
and response message that contain both data and metadata

Hypermedia - resources include links to related resources,
enabling decentralised discovery

REST architectural
elements

e Data elements
e Components

e Connectors

REST data elements

Data element Example

resource link to Web service

resource identifier URL

. HTML document, XML document,
representation

image file
representation metadata media type, last-modified
resource metadata source link, alternates

control data cache-control

Resources

Resources are the key information elements in REST

Any information that can be named can be a resource - image, service,
document

Resources refer to conceptual mappings, not particular entities or values
Abstract definition of resources enables:
e generality - information is not divided by type, implementation

e |ate binding to representation - representation (format) can be decided
based on request

e we can refer/link to (persistent) concepts rather than specific instances
of a concept

Resource identifiers

e Each resource needs an identifier

e |dentifier is defined by the "author" of the resource, not
centralised

Representations

Resources are not transferred between components in the
architecture, but representations of resources

Representations consists of both data and metadata
describing the data

Resource metadata provide information about the
resource not specific to the representation

Control data provides information about the message,
such as for caching

REST components

Component Example

origin server apache, MS IS
gateway/reverse proxy squid, cgi, nginx
Proxy

user agent Chrome, Firefox, curl

REST connectors

Connector Example

client libwww, libcurl
server libwww, Apache API
cache browser, cache networks
resolver bind

tunnel SOCKS

REST connectors

e Connectors handles communication for the components

e Because interactions are stateless and requests self-
descriptive:

e Connectors can handle requests independently and in
parallel

e |ntermediaries can understand requests in isolation

e Information relevant for caching is part of each request

REST process

Origin Servers

Proxy Gateway

L o¢¢
P o OO

o/

Client Connector: @ Client+Cache: Server Connector: @ Server+Cache:

DNS

Source: Fielding and Taylor (2002)

HIT TP In practice

Anatomy of HT TP requests and responses
HTTP methods
Content negotiations

Status codes

HITP requests

* HTTP requests consists of header and body
 Body - the data/payload
* Header - different types:

* General header that can apply to both request and response - Date,
Cache-Control

* Request header - Accept, User-Agent, Referer
* Response header - Age, Location, Server

* Entity header is metadata about the body (MIME, content length etc)

~>curl google.com -v
* Rebuilt URL to: google.com/
Trying 216.58.209.142...
TCP_NODELAY set
Connected to google.com (216.58.209.142) port 80 (#0)

* ¥ X

> GET / HTTP/1.1
> Host: google.com
> User-Agent: curl/7.54.0
> Accept: */*
>
< HTTP/1.1 302 Found
< Cache-Control: private
< Content-Type: text/html; charset=UTF-8
o
< Referrer-Policy: no-referrer
< Location: http://www.google.no/?gfe_rd=cr&dcr=0&e1=mEu4WbXAL41r8welo4a4Dg
< Content-Length: 268
< Date: Tue, 12 Sep 2017 21:03:20 GMT
<

<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">
<TITLE>302 Moved</TITLE></HEAD><BODY>

<H1>302 Moved</H1>

The document has moved

<A HREF="http://www.google.no/?
gfe_rd=cr&dcr=0& ; el=mEud4WbXAL41r8welo4a4Dg">here.

</BODY></HTML >

* Connection #0@ to host google.com left intact

curl -X PATCH "https://play.dhis2.org/demo/api/dataElements/FTRrcoaog83" -u admin:district -H "Content-
type: application/json" -d '{"domainType": "BLABLA"}' -
Trying 52.30.174.183...
TCP_NODELAY set
Connected to play.dhis2.org (52.30.174.183) port 443 (#0)
TLS 1.2 connection using TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
Server certificate: play.dhisZ2.org
Server certificate: RapidSSL SHA256 CA - G3
Server certificate: GeoTrust Global CA
Server auth using Basic with user 'admin'
PATCH /demo/api/dataElements/FTRrcoaog83 HTTP/1.1
Host: play.dhisZ.org
Authorization: Basic YWRtaW46ZGlzdHIpY3Q=
recope e Curtron Request header
Content-type: application/json
Content-Length: 24

* X ¥ X ¥ ¥ % *

¥V V V V V V VYV

upload completely sent off: 24 out of 24 bytes
HTTP/1.1 500 Internal Server Error

Server: nginx/1.4.6 (Ubuntu)

Date: Tue, 12 Sep 2017 21:15:09 GMT
Content-Type: application/json;charset=UTF-8

Response header

Content-Length: 408

Connection: keep-alive
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
X-Content-Type-Options: nosniff
Set-Cookie: JSESSIONID=62886259EE13F8FOA3A9BFFAAASE8Q77; Path=/demo/; HttpOnly
Cache-Control: no-cache, private

AN AANANANAANANANANNA

*

Connection #0 to host play.dhis2.org left intact

{"httpStatus":"Internal Server Error","htt itus” : "ERROR" , "message" : "Can not construct
instance of org.hisp.dhis.dataelement.Data Response body ring value (\"BLABLA\") value not one of
declared Enum instance names: [TRACKER, AGGREGATE]J\n at [Source: {\"domainType\": \"BLABLA\"}; line: 1,
column: 16] (through reference chain: org.hisp.dhis.dataelement.DataElement[\"domainType\"])"}

HTTP methods

GET - request representation of a resource

POST - create an entity based on the payload (body)
PUT - update an entity based on the payload

PATCH - partially update an entity based on the payload
DELETE - delete the resource

HEAD, TRACE, OPTIONS, CONNECT

HTTP methods

GET - safe, idempotent, cacheable
POST

PUT - idempotent

PATCH - can be idempotent
DELETE - idempotent

ldempotent methods can be called multiple times without
changing the result/outcome

Content negotiation

e Content negotiation is the process of determining the
representation of the resource

e Clients specify desired representation through:
e HTTP header Accept field - Accept: application/json
* URL extension - http://localhost/api/cars.json

* |f the requested representation is not available the server should:
* Respond with status code 406 not acceptable

* |nclude a list of available representations

HTTP status codes

e HTTP status codes are divided into classes:
e 1XX - informational
e 2XX - success
e 3XX - redirection
e 4XX - client error

e 5XX - server error

HTTP status codes

Each class is extensible with additional codes

Clients do not need to understand all codes

Unknown codes default to the X00 code (100, 200 etc)

https://tools.ietf.org/html/rfc7231#section-6

https://tools.ietf.org/html/rfc7231%23section-6

REST and RESTful

e REST is an architectural style

o RESTful web services are used to describe web services
designed according to the REST style

e "RESTful Web services are software services which are
published on the Web, taking full advantage and making
correct use of the HTTP protocol”

Maturity of RESTful WS

e Whether a web service is RESTful is not either or

e Can be seen as a maturity model with levels of adherence
to the REST architecture

Level 0 - HTTP as a tunnel
Level 1 - Use of multiple identifiers and resources
Level 2 - Proper use of uniform resource interface and verbs

Level 3 - Use of hypermedia to model relationships

RESTful vs other WS

e RESTful web services make full use of the HTTP protocol

e Alternatives like SOAP and XML-RPC use HTTP primarily
for transport

WSDL

REST API —

i g

"Big" Web Services

e Traditional (hon-RESTful) web services are often called
"big" web services

e Commonly based on using two standards:

e WSDL (Web Services Description Language) - XML
format for describing/defining the web service

e SOAP - XML format for communication

"Big" web services

Based on interacting with services e.g. through remote
procedure calls (RPCs)

All operations are typically POSTed to one/few endpoint(s)

Operations to be performed is based on content of SOAP
(or similar) message rather than an HTTP verb

Extensions to SOAP for specific functionality - WS-
Security, WS-Policy, WS-Addressing etc

SOAP example

<?xml version="1.0" encoding="UTF-8" 7>
<soap:Envelope namespaces defined here...>
<soap:Body>
<FindCustomerByNumResponse xmlns="urn:OrderSvc:0rderInfo">
<CustomerName>Hoops</CustomerName>
</FindCustomerByNumResponse>
</soap :Body>
</soap:Envelope>

http://somedomain.com/api/customers/3
{

1d: 3,

name: Hoops

}

http://somedomain.com/api/customers/3

RESTful vs other WS

® WS-+ Representations

® REST

Many Message Formats
(XML, JSON, ATOM, HTML, CSV, ...)

% 1 Message Format (SOAP)
1 Communication

“Endpoint”

4 HTTP Verbs

Many URIs (GET, PUT, POST, DEL

Many Operations (WSDL) Interface
Resources

Literature

e Fielding and Taylor. 2002.

e Pautusso. 2014.

e More on "Big" web services vs RESTful web services:
http://www2008.org/papers/pdf/p805-pautassoA.pdf

http://www2008.org/papers/pdf/p805-pautassoA.pdf

