INF5820, 2014, Arithmetic and probabilities, 3.9

Exercises on probability

If you are not familiar with probabilities, you are advised to do the exercises at
] http://www.statlect.com/probability exercises.htm

- Probability
- Conditional probability
- Bayes' rule
- Independent events

Arithmetic

We will look on some mathematical notation including exponential s, logarithms, sums and products, to prepare for reading formulas like
$c\left(\right.$ hund $\left.\mid \operatorname{dog} ; \mathbf{e}_{2}, \mathbf{f}_{2}\right)=\frac{t(\text { hund } \mid \operatorname{dog})}{\sum_{i=0}^{3} t\left(\text { hund } \mid e_{i}\right)} \sum_{j=1}^{3} \delta\left(\right.$ hund,$\left.f_{j}\right) \sum_{i=0}^{3} \delta\left(\operatorname{dog}, e_{i}\right)=\frac{1 / 3}{\sum_{i=0}^{3}(1 / 3)} \times 2 \times 2=1$
and the formulas in chapter 4 in Koehn's book. If you are not familiar with such notation, you are advised to come. (We will fill these formulas with content later in the lectures, but it is a prerequisite that we can read the notation).

Probabilities

We will constinue from last week and consider the arg-max-notation (e.g. formula 4.23 in Koehn's book) and binomial coefficients (used e.g. in formula 4.33).

Exercices

Exercise 1

We are rolling a dice four times.
a) What is the chance of getting at least one six?
b) What is the chance of getting exactly one six?
c) Are the two events independent?
d) What is the chance of the last dice being a five?
e) What is the chance of having both (a) and (d)?
f) Are (a) and (d) independent.

Exercise 2

We are interested in studying sentence length in text, i.e. to each sentence we observe its length.
a) What is a reasonable sample space (utfallsrom) for this?
b) Assume that A is the event corresponding to sentences at least 5 and less than 15 words long, and B correspond to sentences at least 10 but less than 20 words long. To what would $A \cap B$ correspond?
c) Do you think A and B are independent? State reasons for your answer.

