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A difficult problem!
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Outline

• Introduction to phonetics

• Speech recognition

• Summary
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Phonetics

• Phonetics = scientific study of speech sounds

• Divided in articulatory, acoustic and auditory phonetics

• The basic phonetic unit is the phone, which is a 
distinctive speech sound

• The IPA (International Phonetic Alphabet) is a standard 
for transcribing the sounds of all human languages

• Currently 107 letters, 52 diacritics, and four prosodic marks

• A specific language will only use a subset of these sounds

• Compatible with other codes such as ARPAbet (U.S. English only)

6
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IPA transcription
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Bokmål

Nordavinden og sola kranglet om hvem av dem som var den sterkeste. Da kom det en mann 
gående med en varm frakk på seg. De blei enige om at den som først kunne få mannen til å 
ta av seg frakken skulle gjelde for sterkere enn den andre. Så blåste nordavinden av all si 
makt, men dess mer han blåste, dess tettere trakk mannen frakken rundt seg, og til sist gav 
nordavinden opp. Da skinte sola fram så godt og varmt, og straks tok mannen av seg frakken. 
Og så måtte nordavinden innrømme at sola var den sterkeste av dem.

IPA
 (Oslo)

[ ˈˈnuːɾɑˌʋinˑn̩ ɔ ˈsuːln̩ ˈˈkɾɑŋlət ɔm ˈʋem ɑ dem sɱ̩ ˈʋɑː ɖɳ̩ ˈˈstæɾk̥əstə ˌdɑˑ ˈkʰɔmː de n ˈmɑnː 
ˌgɔˑənə me n ˈʋɑɾm ˈfɾɑkː pɔ ˌsæ di ble ˈˈeːnjə ɔm ɑt ˈdenː sɱ̩ ˈføʂt ̠ˌkʰʉnˑə fɔ ˈmɑnːn̩ tɔ ˈˈtʰɑː 
ɑ sæ ˈfɾɑkːən ˌskʉlˑə ˈˈjelːə fɔ ɖɳ̩ ˈˈstæɾkəstə ɑ ˌdemˑ ˈsoː ˈˈbloːstə ˈˈnuːɾɑˌʋinːn̩ ɑ ˈʔɑlː sin 
ˈmɑkʰtʰ men ju ˈmeːɾ ɦɑm ˈˈbloːstə ju ˈˈtʰetːəɾə ˌtɾɑkˑ ˈmɑnːn̩ ˈfɾɑkːən ˈɾʉnt sæ ɔ tə ˈsist ˌmɔtˑə 
ˈˈnuːɾɑˌʋinˑn̩ ˈˈjiː ˌɔpʰˑ ˌdɑː ˈˈʂintə ˈsuːln̩ ˈfɾem ˌsɔˑ ˈgɔtʰː ɔ ˈʋɑɾmtʰ ɑt ̚ˈmɑnːən ˈstɾɑks ˌmɔtˑə ˈˈtɑː ɑ 
sæ ˈfɾɑkːən ɔ ˈsoː ˌmɔtˑə ˈˈnuːɾɑˌʋinˑn̩ ˈinːˌɾømˑə ɑt ˈsuːln̩ ˈʋɑːɾ n̩ ˈˈstæɾk̥əstə ʔɑ ˈdemː]

IPA
(Fyresdal)

[ ˈˈnuːɾɑˌʋinˑn̩ ɔ ˈsuːla ˈˈkɾɑŋlɑ um ˈkʋenː ɑʋ ˌd̠æi sɔɱ ˈʋɑː d̠ən ˈˈstæɾk̥ɑstə ˈdoː ˈkɔmː də ɛn 
ˈmɑnː ˈˈgɑŋgɑndə mə æn ˈʋɑɾmə ˈfɾɑkːə pɔ ˌseˑg dæi blæɪ ˈˈʔeːnigə um ɑt dæn sɔɱ ˈfysː 
ˌkʰunˑə fɔ ˈmɑnːən tə ɔ ˈˈtʰɑːk ɑʋ sə ˈfɾɑçːən ˌskʉlːə ˈˈɾeknɑs feɾ ɛñ ˈˈstæɾkɑst ɑʋ ˌd̠ɛɪ ˈsoː 
ˈbluːs ˈˈnuːɾɑˌʋinˑn̩ ɑʋ ˈɑlː si ˈmɑkʰtʰ mən tɪ ˈmæi hɑn ˈbluːs tɪ ˈˈtʰetːɑɾə ˈdɾuːg ˈmɑnːən ˈfɾɑçːən 
ˈɾunt seɰ̥ ɔ tɪ ˈsl̠ʉ̥tː ˈˈmɔtːə ˈˈnuːɾɑˌʋinˑn̩ʔ ˌjeˑ ˈupːʰ ˈd̥oː ˈʂæin ˈsuːla ˈfɾɑmː sɔ ˈgøʰtː ɔ ˈʋɑɾmt ɑt 
ˈmɑnːn̩ me ˈʔæi ˈgɔŋ ˈˈmɔtːə ˈˈtʰɑːkə ˈɑːʋ sə ˈfɾɑçːən ɔ ˈsoː ˈˈmɔtːə ˈˈnuːɾɑˌʋinˑn̩ ˈʋeːˌçɛn̠ːə ʔɑt 
ˈsuːla ˈʋɑː dən ˈˈstæɾk̥ɑ̰st ɑʋ ˈðæ̰ɪ]̥

[Nordavinden og sola, en norsk dialektprøvedatabase på nettet, 
NTNU, http://www.ling.hf.ntnu.no/nos/]
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The speech chain

8

[Denes and Pinson (1993), «The speech chain»]
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Speech production

• Sounds are variations in air pressure

• How are they produced?

• An air supply: the lungs (we usually speak by breathing 
out)

• A sound source setting the air in motion (e.g. vibrating) 
in ways relevant to speech production: the larynx, in 
which the vocal folds are located

• A set of 3 filters modulating the sound: the pharynx, the 
oral tract (teeth, tongue, palate,lips, etc.) & the nasal tract

9
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Speech production

A few languages also rely on sounds not produced 
by vibration of vocal folds, such as click languages 
(e.g. Khoisan family in south-east Africa):

10
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Speech production

11

Visualisation of the vocal tract via 
magnetic resonance imaging [MRI]:

[Speech Production and Articulation Knowledge Group, 
University of Southern California.  http://sail.usc.edu/span/ ]
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Voiced vs. voiceless sounds

12

• Voiced sounds are made 
when the vocal folds are 
vibrating

• e.g. [b], [d], [g], [v], [z], and all 
the vowels

• Voiceless sounds are 
made without such 
vibration

• e.g. [p], [t], [k], [f], [s]
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Sound classes

13

Phones can be divided into:

Consonants 

voiced or voiceless

narrow to 
complete closure 

of vocal tract

Vowels 

nearly always voiced

little obstruction of 
vocal tract

often louder and 
longer than 
consonants

Glides              
(or semivowels)

between vowels 
and consonants

(e.g. [y] and [w])
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Consonants

• Consonants are realised by restricting the airflow

• They can differ in three ways:

14

Place of 
articulation 

where does the 
restriction occur?

• Labial (with the 
lips):   [p],[b],[m]

• Coronal: (tip or 
blade of tongue): 
[s], [t], [d]

• Guttural (back of 
the oral cavity,):   
[k], [g],[ŋ]

Manner of articulation 
how does the restriction occur?

• Stop: airflow blocked then released: [b], [t], [k]

• Nasal: through nasal cavity: [n],[m],[ŋ]

• Fricatives: airflow constricted: [f],[v], [s]

• Approximants: articulators are close, but not 
enough to create turbulent flow: [w],[y],[l],[r]

Voice vs voiceless 
Are the vocal folds vibrating?
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Vowels

• Relevant parameters for 
vowels:

• vowel height: height of highest 
part of the tongue

• vowel backness: location of this 
high point in the oral tract

• Shape of the lips

• In some languages, distinction 
between short and long vowels

15
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Pronunciation variation

• Words can be pronounced very differently:

• Phonetic processes: aspirations, assimilations, deletions

• Co-articulation: anticipation of next phone by articulators, or 
perseverance of previous move

• Influence of various contextual factors: age, gender, 
environment, rate of speech, dialect, register

• Concept of phoneme: 

• Abstraction over a set of phones/speech sounds regarded as a 
single «sound» (in opposition to others) in a given language

• Example: the English /t/ can regroup [th], [ɾ] and [t]

16
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Pronunciation variation

17
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A = 3
f = 2

Acoustic phonetics

• A (speech) sound is a variation of air pressure 

• This variation originates from the speaker’s speech organs

• We can plot a wave showing the changes in air pressure 
over time (zero value being the normal air pressure)

18

y(t) = A ⇤ sin(2�ft)

output signal (in our 
case, air pressure)

as a function of time

amplitude

frequency of 
the signal
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Speech waveforms

19

• Of course, speech is more complex than a simple sine function

• But it can still be described using the same mathematical 
apparatus, in terms of frequency, amplitude etc.

Time (s)
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-0.2938

0.251

0

untitled

Time (s)
1.126 1.157

-0.1201

0.136

0

untitled

zoom on 
the part 
between 
1.126 and 
1.157 s.

can see about 4 cycles in the waveform, which 
means a frequency of about 4/0.03 ≈129 Hz
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Signal measurements

20

1. The fundamental frequency F0: lowest frequency of the 
sound wave, corresponding to the speed of vibration of 
the vocal folds (between 85-180 Hz for male voices and 
165-255 Hz for female voices)

Intensity = 10 log10
Power

P0
= 10 log10

1

NP0

NX

i=1

y(ti)
2

2. The intensity: the signal power normalised to the 
human auditory threshold, measured in dB (decibels):

for a sample of N time points t1,... tN

P0 is the human auditory threshold, = 2 x 10-5 Pa

  Note: dB scale is logarithmic, not linear!  
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Signal measurements

21

Why are F0 and the intensity important?

F0 correlates with the pitch of the 
voice, and the pitch movement for 
an utterance will give us its intonation
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Signal measurements

22

The signal intensity 
corresponds to the loudness 
of the speech sound

Why are F0 and the intensity important?

F0

voice, and the pitch movement for 
an utterance will give us its intonation

Time (s)
1.848 3.012

-0.2549

0.2366

0

slice

Time (s)
1.848 3.012
50

100

In
te

ns
ity

 (d
B

)

slice

50

60

70

80

90

100

low intensity

Time (s)
3.806 4.904
-1

0.7604

0

slice

Time (s)
3.806 4.904
50

100

In
te

ns
ity

 (d
B

)

slice

50

60

70

80

90

100

high intensity



@ 2014, Pierre Lison - INF5820 course

Spectral analysis

• Possible to derive basic phonetic features (such as pitch or 
loudness) directly from the waveform

• But usually, the phones cannot be recognised so easily

• For this, we need to use a different representation, in 
terms of the signal’s component frequencies (spectral analysis, 
based on Fourier's transform) 

23
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spectrogram showing how the different frequencies 
making up a waveform change over time
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Outline

• Introduction to phonetics

• Speech recognition 

• The speech recognition problem 

• Acoustic features 

• Acoustic modelling 

• Language modelling 

• Decoding 

• Evaluation 

• Summary
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The noisy channel model

25

• Give the observation of the noisy sentence (acoustic 
input), we try to guess the original sentence

• In other words, we observe the input O, and search 
for the best estimate W of the sentence
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Formalisation

26

• Speech recognition as a Hidden Markov Model:

• The observations is represented as a sequence of individual 
acoustic observations (e.g. every 10 milliseconds):

• The (hidden) utterance is a sequence of words:

• Goal: find the utterance 

• But P(W|O) is difficult to estimate directly!

O = o1, o2, o3, ..., om

W = w1, w2, w3, ..., wn

ˆW = argmax

W
P (W |O)
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Formalisation

27

• Using Bayes' rule, we can rewrite Ŵ as:

ˆW =argmax

W

P (O|W )P (W )

P (O)

(Bayes)

=argmax

W
P (O|W )P (W ) (P(O) constant for all W)

Determines the probability 
of the word sequence W

Language modelAcoustic model

Determines the probability 
of the acoustic inputs O 
given the word sequence W
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Formalisation

28

untitled

untitled

language model P(W)

Acoustic features (O)

Acoustic model P(O|W)

decoding

«I’m Pierre»Ŵ =
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Acoustic features

• First step: process the raw speech signal to extract its 
acoustic features O

• The extraction is repeated at regular intervals (e.g. 10 ms)

• The features should measure core properties of the signal

• Mel-Frequency Cepstral Coefficients (MFCC) are a popular 
way to extract such features

• Total of 39 real-valued MFCC features for each time frame

29

untitled

Acoustic features (O)
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MFCC steps

• Step 1 - Analog-to-digital conversion: speech signal is transformed to digital form 
by sampling it at a given frequency (ex: 44 kHz)

• Step 2 - Pre-emphasis: The amount of energy present in the high frequencies 
(important for speech) are boosted

• Step 3 - Windowing: the signal is divided into frames of a given size (e.g. 10 ms). 
The frames might overlap (to ensure no information is lost)

• Step 4 - Discrete Fourier transform: spectral analysis of the signal for each time 
frame (decomposition into component frequencies)

• Step 5 - Mel-scale wrapping: map the DFT frequency output onto the so-called 
Mel scale (scale that model the perceptual sensitivity of the human ear)

• Step 6 - Cepstral analysis: taking the log of the frequencies, and then calculating 
the so-called Inverse Discrete Fourier Transform

• Step 7: Derivation of all features extracted from the signal

30
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untitled

Acoustic features (O)

Acoustic model P(O|W)

Acoustic modelling

• Acoustic modelling = estimation of P(O|W)

• W represents an utterance hypothesis (word sequence)

• O represents a sequence of acoustic features

• The acoustic model is a probabilistic mapping between the acoustic 
features and the phones making up the utterance

31
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Acoustic modelling: states

32

• How do we estimate this distribution P(O|W)?

• Recall that the ASR problem is essentially a Hidden Markov 
Model (HMM): the real utterance is «hidden» and need to 
be inferred from the set of acoustic observations

• But what are exactly the states of the model to use?

O1 O2 Oi-1 Oi

X1 Xi-1 Xi... ...X2
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Acoustic modelling: states

33

• Each word can be factored into its component phones, 
corresponding to the hidden states

• Even better: define the states at the sub-phone level 
(since the spectral characteristics of a phone can vary 
dramatically during its pronunciation)

start mid finbeg end

Often structured 
in three parts: 
beginning,  
middle and final

[i] [ɛ] [r] end[a] [æ] [m][y] [p]start

The arrows are the transition probabilities (observations not shown)
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Acoustic modelling: estimation

• We are thus trying to estimate P(o|s)

•  s is a sub-phone state, e.g. the last part of the phone [b]

• o is in the MFCC case a list of 39 real-valued features

• This distribution can be estimated from 
speech data, but there are two «challenges»:

1. We don’t have direct access to the exact state S in our 
data (the states are hidden)

2. The acoustic features are real values, not discrete 
symbols (=infinite number of possible observations!)

34
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Acoustic modelling: estimation

35

• First challenge: the states are hidden!

• HMM training problem: Given the observation sequence O = 
o1,...on, estimate both the transition probabilities between 
states P(si|si-1), and the observation probabilities P(oi|si)

• It turns out that there exists a standard 
algorithm for estimating these probabilities

• Called Forward-Backward, or Baum-Welch algorithm

• Special case of a generic, iterative method called Expectation-
Maximization

We are not going to review the details of the algorithm 
but see Jurafsky & Martin section 6.5 for details
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Acoustic modelling: estimation

36

• Second challenge: the 
observations are continuous 
(39 real values for MFCC)

• Acoustic models often encoded as 
normal distributions (Gaussians)

• Each Gaussian is defined by its mean μ 
and variance σ2 (both of which can be 
easily estimated from data)

• To improve estimates, we can use 
weighted combinations of multiple 
Gaussians (= Gaussian Mixture Models)

Question: Assume an 
acoustic model with 40 
different phones, MFCC 
features and 3 components 
in the Gaussian mixtures.
How many parameters do 
we need to estimate?

Answer: 40 (nb. phones) × 39 (nb features) × 3 (nb. Gaussians)
× 3 (mean, variance & weight of each Gaussian) =14040
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Acoustic modelling: adaptation

37
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Acoustic modelling: adaptation

38

• Often a mismatch between the data on which the 
acoustic model was trained and real-life conditions:

• Variations in voice, accents, genre, speech rate, environmental noise, 
type of microphone, etc.

• But full retraining of the acoustic model is usually not 
feasible

• One can perform speaker/domain adaptation instead:

• Generic acoustic model «wrapped» in a context-dependent model

• Lead to huge improvements in ASR accuracy in recent years
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Language modelling

39

language model P(W)

• The second ASR model is the language model

• Most interesting part for us: we rarely touch the system’s acoustic 
models, but need to provide the domain’s language model(s)

• Encodes the likelihood of an utterance P(W)

• Mapping from words to possible pronunciations is done using a 
phonetic dictionary:  sterkeste -> ˈˈstæɾk̥əstə

untitled

Acoustic features (O)

Acoustic model P(O|W)
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Language modelling

40

• First option: define P(W) with a 
hand-crafted grammar 

• The (context-free) grammar must specify 
all possible utterances for the domain

• Alternatively, one could estimate 
a statistical model from data

• Need to collect data from the interaction 
(via e.g. Wizard-of-Oz interactions)

+ Good accuracy

- Highly rigid

+ More flexible

- Higher WER



@ 2014, Pierre Lison - INF5820 course

Recognition grammars

• Explicit specification of possible utterances

• Usually some variant of context-free grammars

• Can include weights to increase/decrease the likelihood of 
particular phrases

• Everything not covered by the grammar is ignored!

41

(toy example, constrained 
here to a finite-state)
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Recognition grammars

42

<grammar version="1.0" root="simpleGrammar">
<!--Simple grammar for greetings and closings -->
   

<rule id="simpleGrammar">
<one-of>

<ruleref uri="#greeting"/>
<ruleref uri="#closing"/>

</one-of>
</rule>

<rule id="greeting">
<item>

<one-of>
    <item>hello</item>

<item>hi</item>
       </one-of>
    </item>
   <item repeat="repeat="0-1">

<ruleref uri= "#name "/> 
</item>

</rule>

                ....

  ....
<rule id="closing">

<item>
<one-of>
    <item>goodbye</item>

<item>bye</item>
       </one-of>
    </item>
   <item repeat="repeat="0-1">

<ruleref uri= "#name "/> 
</item>

</rule>

<rule id= "name ">
<one-of>

<item>Pierre</item>
<item>Jan Tore</item>

</one-of>
</rule>
</grammar>
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Statistical language modelling

43

• How can we estimate P(W) from data?

• The probability P(W) is often factored as a Markov 
Chain of order k, also called an N-gram:

• Generally, k=2 or 3 (bigram or trigram)

P(wi|wi-1,..., w1) = P(wi| wi-1,... wi-k)

w1 wi-1 wi wn... ...wi-2

... ...

(here for k=2)
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Statistical language modelling

44

• The probabilities P(wi|wi-1,...wi-k) can be estimated 
by counting relative occurrences in the data

• However, «plain» estimation has a problem with 
low-frequency counts:

• If the sequence [wi-k,..wi-1,wi] never occurs in the data, the 
probability P(wi|wi-1,...wi-k) will be set to zero

• Not a reasonable assumption with limited training data!

• Solution: use smoothing techniques (e.g. Good-Turing)

See chap. 4 of Jurafsky & Martin for details
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Language model adaptation

45

• Some speech recognisers allow the language model 
to be modified «on the fly», at runtime

• We can exploit the context to «prime» parts of the 
model, and adapt the probabilities to the situation

• Example: if the system just asked a yes/no question, the user is 
more likely to answer «yes» or «no»

•  Example: if the environment contains certain objects (e.g. a box), 
the user is more likely to mention them

• Can lead to big improvements in accuracy

[P. Lison. A salience-driven approach to speech recognition for human-robot interaction, 
Interfaces: Explorations in Logic, Language and Computation, 2010]
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Decoding

46

• Decoding = search for the most likely word 
sequence given the observations

• Large search space, but there are various «tricks» 
to speed up the search (e.g. dynamic programming)

language model P(W)

untitled

Acoustic features (O)

Acoustic model P(O|W)

decoding

«I’m Pierre»Ŵ =
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Decoding
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• Specialised algorithms exist to perform this 
kind of search operations efficiently

• Most well-known decoding algorithm is Viterbi

• Viterbi processes the observation sequence left to right 
and calculates the state probabilities at the current step 
based on the previous step

• Other algorithms also possible to perform e.g. multi-pass 
decoding (generate N-best results)

See section 6.4, 9.6 and 10.1 of Martin & Jurafsky for details 
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ASR evaluation
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• Standard evaluation metric: Word Error Rate

• Measures how much the utterance hypothesis h differs 
from the «gold standard» transcription t*

• Relies on a minimum edit distance between 
h and t*, counting the number of word 
substitutions, insertions and deletions:

Word Error Rate = 100⇥ Insertions + Substitutions + Deletions

Number of words in transcription
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ASR evaluation
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• Examples of evaluation:

Gold standard 
Transcription

yes can you now rotate 
this triangle

ASR hypothesis yes can you not rotate 
this triangle there

Gold standard 
Transcription there is five and

ASR hypothesis the size and

WER = 100⇥ 1 Ins + 1 Sub

7
= 28.6%

1 Sub + 1 Ins
WER = 100⇥ 2 Sub + 1 Del

4
= 75%

2 Sub + 1 Del

@ 2014, Pierre Lison - INF5820 course

Summary

• We introduced some basic concepts of phonetics, 
such as phones, pitch or loudness

• Speech recognition: Find ("decode") the most 
likely utterance(s) for a speech signal, based on two 
probabilistic models:

• Acoustic model: likelihood of observed acoustic features for each 
possible (sub-)phone

• Language model: likelihood of particular sequence of phones

• Evaluation of ASR results via edit-distance metric

50
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Next lecture

• Next Friday, we’ll move to the next step in the 
processing pipeline: natural language understanding 
(NLU)

• We’ll review some of the core tasks that need to 
be achieved there:

• Correction of disfluencies

• Semantic parsing

• Reference resolution

• Dialogue act recognition
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