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® Introduction to phonetics

® Articulatory phonetics
® Pronunciation variation

® Acoustic phonetics
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Phonetics

UiO ¢ University of Oslo

® Phonetics = scientific study of speech sounds

® Divided in articulatory, acoustic and auditory phonetics

® The basic phonetic unit is the phone, which is a

distinctive speech sound

® The IPA (International Phonetic Alphabet) is a standard
for transcribing the sounds of all human languages

® Currently 107 letters, 52 diacritics, and four prosodic marks

® A specific language will only use a subset of these sounds

® Compatible with other codes such as ARPAbet (U.S. English only)
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IPA transcription

Nordavinden og sola kranglet om hvem av dem som var den sterkeste. Da kom det en mann
gaende med en varm frakk pa seg. De blei enige om at den som fgrst kunne fa mannen til 3
Bokmal ta av seg frakken skulle gjelde for sterkere enn den andre. Sa blaste nordavinden av all si

okma makt, men dess mer han blaste, dess tettere trakk mannen frakken rundt seg, og til sist gav
nordavinden opp. Da skinte sola fram sa godt og varmt, og straks tok mannen av seg frakken.
Og sa matte nordavinden innrgsmme at sola var den sterkeste av dem.

[ "nura,vinn o 'suzin “kranlet om ‘vem a dem sm 'va: dn “staerkeste da- k"om: de n ‘'man:
.goena me n 'varm ‘frak: po see di ble "enjo om at 'den: sm fast k"tn-e fo ‘'manmn to "t'a:

IPA a see fraken sktloe “jele fo dn "steerkeste a dem. 'so: “bloiste "nura vinn a ‘?al: sin
(Oslo) 'mak"t" men ju ‘'mexr ham "blo:ste ju “t'etere trak- ‘'mann 'fralfxen tnt see o to 'sist moto
“nuzra,vin-n “jir op"™ dax “sints 'su:ln ‘frem so- 'got': 0 'varmt" at ‘man:en ‘straks mot-e "ta: a
see ‘frakien 0 'sor mot-e "nuxra LiNWN ‘inzrem-e at ‘suiln ‘var n “steerkests ?a ‘dem;]

[ "nurra,vin-n o 'sutla "kranla um 'kven: av deei som ‘va: den “steerkasts ‘do: ‘kom: de en

‘man: "gangands ma aen ‘'varma frake po se-g daei blaer "?emnige um at deen som fys:

IPA k'un-e fo 'man:en te o "t"azk av se ‘frag:ien skule “reknas fer €n "staerkast av der ‘so:

‘bluzs "nuzra vin-n av ‘al: si ' mak"t" man tt ‘'meei han ‘blus tr "t'etiare ‘dru:g ‘'man:en ‘frag:an

(Fyresdal)| nt sew o 1 'slut: "mote "nuxra,vinN? je- 'up: ‘do: ‘seein 'suda ‘fram: so ‘'get: o ‘varmt at

'man:n me '?eei 'gon "'motie "t'atke ‘arv se ‘fragien o 'sor "motie “numra vin-n 've:gens ?at
'suzla ‘va: den “steerkast av ‘Ozei]

[Nordavinden og sola, en norsk dialektprgvedatabase pa nettet,

NTNU, http://www.ling.hf.ntnu.no/nos/]
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The speech chain
SPEAKER LISTENER

Sound waves

[Denes and Pinson (1993), «The speech chainy]
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Speech production

® Sounds are variations in air pressure

® How are they produced!?

® An air supply: the lungs (we usually speak by breathing
out)

® A sound source setting the air in motion (e.g. vibrating)
in ways relevant to speech production: the larynx, in
which the vocal folds are located

® A set of 3 filters modulating the sound: the pharynx, the
oral tract (teeth, tongue, palate,lips, etc.) & the nasal tract
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Speech production

A few languages also rely on sounds not produced
by vibration of vocal folds, such as click languages
(e.g. Khoisan family in south-east Africa):
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Speech production

Visualisation of the vocal tract via
magnetic resonance imaging [MRI]:

Hard Palate Nasal Cavity

Soft Palate
(Velum) ) )
Nostril
Pharyngeal Lip
Cavity

Larynx
Esophagus

Trachea

[Speech Production and Articulation Knowledge Group,
University of Southern California. http://sail.usc.edu/span/ ]
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Voiced vs. voiceless sounds

® \oiced sounds are made
when the vocal folds are
vibrating

® e.g. [b], [d], [g], [V] [z], and all
the vowels

® \oiceless sounds are
made without such
vibration

* eg[p][t] k] [f], [s]
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Sound classes
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Phones can be divided into:

Consonants VYowels
voiced or voiceless nearly always voiced
narrow to little obstruction of
complete closure vocal tract

of vocal tract often louder and

longer than
consonants
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Consonants

Glides
(or semivowels)

between vowels
and consonants

(e.g. [y] and [w])

UiO ¢ University of Oslo

® Consonants are realised by restricting the airflow

® They can differ in three ways:

Voice vs voiceless
Are the vocal folds vibrating?

Manner of articulation
how does the restriction occur?
®  Stop:airflow blocked then released: [b], [t], [k]
® Nasal: through nasal cavity: [n],[m],[1]
® Fricatives: airflow constricted: [f],[V], [s]

®  Approximants: articulators are close, but not
enough to create turbulent flow: [w],[y],[1],[r]

® [abial (with the

®  Coronal: (tip or

®  Guttural (back of

Place of
articulation
where does the
restriction occur?

lips): [p].[b].[m]

blade of tongue):

[s], [t], [d]

the oral cavity,):

[k, [gl.[n]
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® Relevant parameters for
vowels:

® vowel height: height of highest
part of the tongue

® vowel backness: location of this
high point in the oral tract

® Shape of the lips

® |n some languages, distinction
between short and long vowels

@ 2014, Pierre Lison - INF5820 course

Front Central Back

high 1

high-mid €

A®D

lov-mid
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Pronunciation variation

® Words can be pronounced very differently:

® Phonetic processes: aspirations, assimilations, deletions

® Co-articulation: anticipation of next phone by articulators, or

perseverance of previous move

® [nfluence of various contextual factors: age, gender,
environment, rate of speech, dialect, register

® Concept of phoneme:

® Abstraction over a set of phones/speech sounds regarded as a
single «soundy (in opposition to others) in a given language

® Example: the English /t/ can regroup [t"], [] and [t]
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Pronunciation variation

N phonetic transcription Phonetic Transcription Phonetic Transcription

N N
82 | ae n 2 | ax nx 1 ix dd | d
63 | eh n 2 |gq ae ae n d 1 ae eh n
45 | ix n 2 | g ix n 1 hh n
35 | ax n 2 | ix n dd | d 1 ix n t
34 | en 2 |ih 1 ae ax n dd | d
30 | n 2 | eh eh n 1 iy eh n
20 | ae n dd | d 2 | q eh nx 1 m
17 | ih n 2 | ix d n 1 ae ae n d
17 | q ae n 1 [eh m 1 nx
11 | ae n d 1 [ax [n ded | d 1 | q ae ae n
7 | q eh n 1 [aw [ n 1 | q ae ae n ded | d
7 | ae nx 1 ae q 1 q ae eh n ded | d
6 | ae ae n 1 eh dl 1 q ae ih n
6 | ah n 1 ah nx 1 aa n
5 |eh nx 1 ae n t 1 q ae n d
4 uh n 1 eh d 1 ? nx
4 |ix nx 1 [ ah n ded | d 1 | q ae n q
4 | q ae n dd | d 1 |[ey ih n dd | d 1 |eh n m
3 |eh n d 1 | ae ix n 1 | q eh en del
3 |q ae nx 1 ae nx ax 1 eh ng
3 |eh 1 [ax [ ng 1 q eh n q
2 ae n dcl 1 ay n 1 em
2 | ae 1 ih ah n d 1 q eh ow | m
2 | ax 1 | ae hh 1 q ih n
2 |ax |n d 1 ih ng 1 q ix en
2 | ae eh n dd | d 1 ix 1 er
2 | eh n dd | d 1 ae n d dcl

Table 1. 80 pronunciation variants of the word "and" from the Switchboard Transcription Corpus. The variants are listed in order
of their frequency. The phonetic symbols are from a transcription system based on Arpabet. The segment [q] denotes a glottal stop.
The symbol set and transcription methods are described in [15].
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Acoustic phonetics

® A (speech) sound is a variation of air pressure
® This variation originates from the speaker’s speech organs

® We can plot a wave showing the changes in air pressure
over time (zero value being the normal air pressure)

o}
J

2 A=3

amplitude time variable

t t
y(t) = A x* sin(ZW@@)
outpult signal (in our  frequency of )

case, air pressure) the signal
as a function of time 3

N
-+

Il
N

0 0.5 1 1.5 2
Time (s)
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® Of course, speech is more complex than a simple sine function

® But it can still be described using the same mathematical
apparatus, in terms of frequency, amplitude etc.

0.251

0.136

|
|
1157 s.

—_—

(,e OM | (A ) A LA
e '

.293§
0.04047

1.479 -0.1201
Time (s)

1.126

1.157
Time (s)

can see about 4 cycles in the waveform, which
means a frequency of about 4/0.03 =129 Hz
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Signal measurements

The fundamental frequency Fo: lowest frequency of the

sound wave, corresponding to the speed of vibration of

the vocal folds (between 85-180 Hz for male voices and
165-255 Hz for female voices)

2. The intensity: the signal power normalised to the

human auditory threshold, measured in dB (decibels):

N
1
=1

for a sample of N time points tj,... tn

P
Intensity = 10 log;, Lower

Po is the human auditory threshold, = 2 x 10> Pa

Note: dB scale is logarithmic, not linear!
@ 2014, Pierre Lison - INF5820 course
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Signal measurements

Why are Fo and the intensity important?

v

Fo correlates with the pitch of the Intgr.rog.ative utterance
voice, and the pitch movement for = rising intonation at the end
an utterance will give us its intonation j

"The ball is red" "Is the ball red?"

0.3681

0.2002

-0.3904

-0.2713

0.3906 slicel 1.284 0.3449 slice 1.187

Time (s) Time (s)

300 300

= &=
\/\ \

, ——— ; _

0.3906 1.284 0.3449 1.187
Time (s) Time (s)
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Signal measurements

Why are Fo and the intensity important?

v N

The signal intensity
corresponds to the loudness
of the speech sound

low intensity high intensity

0.7604-

il

1.848 slice 3.012 3.806 slice 4.904
Time (s) Time (s)
100 100
~ 9% ~ 9%
g g
2 R ~ N
ER( A £ 7
2 L\ : LA
el VAR VA o Vv
50 50
1.848 3.012 3.806 4.904
Time (s) Time (s)
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U} Spectral analysis

® Possible to derive basic phonetic features (such as pitch or
loudness) directly from the waveform

® But usually, the phones cannot be recognised so easily

® For this, we need to use a different representation, in
terms of the signal’s component frequencies (spectral analysis,
based on Fourier's transform)

5000+

0.4157

4000

< 3000] ?’ l‘h}‘ ‘
0- —_ 3 w
2. 20004 i 1
£ |
1000 I
-0.4086 . ! “ [
0 untitled 1.707 0-
0 02 04 06 08 1 12 14 14.707
Time (s)

spectrogram showing how the different frequencies
making up a waveform change over time

@ 2014, Pierre Lison - INF5820 course 23

UiO ¢ University of Oslo

® Speech recognition

® The speech recognition problem
® Acoustic features

® Acoustic modelling

® | anguage modelling

® Decoding

® Evaluation
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4} The noisy channel model

&

source noisy guess at
¢ sentence  DPECODER original
sentence ?Alice was beginning to get.) Sentence

If music be the — ?Every happy family...
food of love... —— ?In a hole in the ground...

?1f music be the food of love...

?1f music be the foot of dove..

If music be the
food of love...

NOISY CHANNEL

® Give the observation of the noisy sentence (acoustic
input), we try to guess the original sentence

® |n other words, we observe the input O, and search
for the best estimate WV of the sentence

@ 2014, Pierre Lison - INF5820 course

SAS o
A O\
S A
B
B
55
Oy

25

UiO ¢ University of Oslo

Formalisation

® Speech recognition as a Hidden Markov Model:

® The observations is represented as a sequence of individual
acoustic observations (e.g. every |10 milliseconds):

O - OI’ 02’ 03, ceoy Om

® The (hidden) utterance is a sequence of words:

W = WI’ WZ’ W3, cooy Wn

® Goal: find the utterance

A

W = argmax P(W|O)
w
e But P(W/|O) is difficult to estimate directly!

@ 2014, Pierre Lison - INF5820 course 26
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Formalisation

® Using Bayes' rule, we can rewrite W as:

. P(OW)YP(W
W :argvr;lax ( |P(g)< ) (Bayes)

= argmax P(O|W)P(W) (P(O) constant for all W)

/N

Acoustic model Language model
Determines the probability Determines the probability
of the acoustic inputs O of the word sequence W

given the word sequence W

@ 2014, Pierre Lison - INF5820 course 27
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U} Formalisation

L

Acoustic features (O)

1

[Acoustic model P(O|W)] [ language model P(W) ]

\decoding /

W = «I’'m Pierrey
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Acoustic features

\

Acoustic features (O)

® First step: process the raw speech signal to extract its
acoustic features O

® The extraction is repeated at regular intervals (e.g. 10 ms)

® The features should measure core properties of the signal

® Mel-Frequency Cepstral Coefficients (MFCC) are a popular
way to extract such features

® Total of 39 real-valued MFCC features for each time frame
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MFCC steps

® Step | - Analog-to-digital conversion: speech signal is transformed to digital form
by sampling it at a given frequency (ex: 44 kHz)

® Step 2 - Pre-emphasis:The amount of energy present in the high frequencies
(important for speech) are boosted

® Step 3 - Windowing: the signal is divided into frames of a given size (e.g. 10 ms).
The frames might overlap (to ensure no information is lost)

® Step 4 - Discrete Fourier transform: spectral analysis of the signal for each time
frame (decomposition into component frequencies)

® Step 5 - Mel-scale wrapping: map the DFT frequency output onto the so-called
Mel scale (scale that model the perceptual sensitivity of the human ear)

® Step 6 - Cepstral analysis: taking the log of the frequencies, and then calculating
the so-called Inverse Discrete Fourier Transform

® Step 7: Derivation of all features extracted from the signal

@ 2014, Pierre Lison - INF5820 course 30
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Acoustic modelling

Acoustic features (O)

( Acoustic model P(O|W) J

® Acoustic modelling = estimation of P(O|W)
® W represents an utterance hypothesis (word sequence)
® O represents a sequence of acoustic features

® The acoustic model is a probabilistic mapping between the acoustic
features and the phones making up the utterance
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Acoustic modelling: states

® How do we estimate this distribution P(O|W)?

® Recall that the ASR problem is essentially a Hidden Markov
Model (HMM): the real utterance is «hidden» and need to
be inferred from the set of acoustic observations

® But what are exactly the states of the model to use!?

PP P
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@ Acoustic modelling: states

® Each word can be factored into its component phones,
corresponding to the hidden states

O - DB
The arrows are the trans'i};io"r’; |.3.'i‘o.babilities (observations not shown)
® Even better: defirie the states at the sub-phone level

(since the spe‘EtraI characteristicé“qf a phone can vary
dramatically during its pronunciation).

Often structured
in three parts:

0 R, B beginning,
—»—»—»@—» . |middle and final

......................................................................................................
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@ Acoustic modelling: estimation

® We are thus trying to estimate P(o|s)
® s is a sub-phone state, e.g. the last part of the phone [b]

® o s in the MFCC case a list of 39 real-valued features

® This distribution can be estimated from
speech data, but there are two «challenges»:

I. We don’t have direct access to the exact state S in our
data (the states are hidden)

2. The acoustic features are real values, not discrete
symbols (=infinite number of possible observations!)

@ 2014, Pierre Lison - INF5820 course 34
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® First challenge: the states are hidden!

® HMM training problem: Given the observation sequence O =
0J,...0n, €stimate both the transition probabilities between
states P(si|si.1), and the observation probabilities P(oi|si)

® |t turns out that there exists a standard
algorithm for estimating these probabilities

e Called Forward-Backward, or Baum-Welch algorithm

® Special case of a generic, iterative method called Expectation-
Maximization

We are not going to review the details of the algorithm
but see Jurafsky & Martin section 6.5 for details
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Acoustic modelling: estimation

® Second challenge: the "

observations are continuous "
(39 real values for MFCC)

® Acoustic models often encoded as

, 07202,
=0, 07=10,—
=0, 0“=50,

=-2,0%205,—

normal distributions (Gaussians) ) B e T ———
® FEach Gaussian is defined by its mean Y Question: Assume an

and variance 0° (both of which can be acoustic model with 40

easily estimated from data) different phones, MFCC

. . features and 3 components
® To improve estimates, we can use in the Gaussian mixtures

weighted combinations of multiple How many parameters do
Gaussians (= Gaussian Mixture Models) we need to estimate?

Answer: 40 (nb. phones) %X 39 (nb features) x 3 (nb. Gaussians)
X 3 (mean, variance & weight of each Gaussian) =14040

@ 2014, Pierre Lison - INF5820 course

UiO ¢ University of Oslo

35

UiO ¢ University of Oslo

36



IAS O
S

&)
= (O
S P
2
&
\
raass

UiO ¢ University of Oslo

Acoustic modelling: adaptation

@ 2014, Pierre Lison - INF5820 course
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Acoustic modelling: adaptation

® Often a mismatch between the data on which the

acoustic model was trained and real-life conditions:

® Variations in voice, accents, genre, speech rate, environmental noise,
type of microphone, etc.

® But full retraining of the acoustic model is usually not
feasible

® One can perform speaker/domain adaptation instead:

® Generic acoustic model «wrapped» in a context-dependent model

® | ead to huge improvements in ASR accuracy in recent years

@ 2014, Pierre Lison - INF5820 course

38



UiO ¢ University of Oslo

Language modelling

[ language model P(W) j

® The second ASR model is the language model

® Most interesting part for us: we rarely touch the system’s acoustic
models, but need to provide the domain’s language model(s)

® Encodes the likelihood of an utterance P(W)

® Mapping from words to possible pronunciations is done using a
phonetic dictionary: sterkeste -> “steerkaste

@ 2014, Pierre Lison - INF5820 course 39
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@ Language modelling

® First option: define P(W) with a + [Good accuracy
hand-crafted grammar

- | Highly rigid

® The (context-free) grammar must specify
all possible utterances for the domain

® Alternatively, one could estimate [T More flexible
a statistical model from data Higher WER

® Need to collect data from the interaction
(via e.g.Wizard-of-Oz interactions)
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Recognition grammars

® Explicit specification of possible utterances
® Usually some variant of context-free grammars

® Can include weights to increase/decrease the likelihood of
particular phrases

® Everything not covered by the grammar is ignored!

Ana nice
O 0O @
David tall

(toy example, constrained
here to a finite-state)
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Recognition grammars

<grammar version="1.0" root="simpleGrammar">
<!I--Simple grammar for greetings and closings -->

<rule id="simpleGrammar">

<rule id="greeting">

<item repeat="repeat="0-1">
<ruleref uri= "#name " />
</item>
</rule>

<rule id="closing">

<item>
<one-of>
o - <one-of>
<ruleref uri="#greeting" /> . .
. o <item>goodbye</item>
<ruleref uri="#closing" /> . .
<item>bye</item>
</one-of>
</one-of>
</rule> .
</item>

<item repeat="repeat="0-1">

<item> <ruleref uri= "#name "/>
<one-of> </item>
<item>hello</item> </rule>
<item>hi</item> o .
<rule id= "name ">
</ one-of>
. <one-of>
</item> . . .
<item>Pierre</item>

<item>Jan Tore</item>
</one-of>
</rule>
</grammar>

@ 2014, Pierre Lison - INF5820 course
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U} Statistical language modelling

® How can we estimate P(W) from data!

® The probability P(W) is often factored as a Markov
Chain of order k, also called an N-gram:

P(wi|Wi.1s..., wi) = P(Wi| Wi.i.... Wi.k)

® Generally, k=2 or 3 (bigram or trigram)

O T -€

(here for k=2)
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@ Statistical language modelling

® The probabilities P(wi|wi.i,...wi.k) can be estimated
by counting relative occurrences in the data

® However, «plain» estimation has a problem with
low-frequency counts:

® |[f the sequence [Wi...Wi.|,wi] never occurs in the data, the
probability P(wi|wi.,...wi) will be set to zero

® Not a reasonable assumption with limited training data!

® Solution: use smoothing techniques (e.g. Good-Turing)

See chap. 4 of Jurafsky & Martin for details
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Language model adaptation

® Some speech recognisers allow the language model
to be modified «on the fly», at runtime

® We can exploit the context to «primey parts of the
model, and adapt the probabilities to the situation

® Example:if the system just asked a yes/no question, the user is
more likely to answer «yes» or «no»

® Example:if the environment contains certain objects (e.g.a box),
the user is more likely to mention them

® Can lead to big improvements in accuracy

[P. Lison.A salience-driven approach to speech recognition for human-robot interaction,
Interfaces: Explorations in Logic, Language and Computation, 2010]
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® Decoding = search for the most likely word
sequence given the observations

® | arge search space, but there are various «tricks»
to speed up the search (e.g. dynamic programming)

\decoding /

W = «I’'m Pierre»
@ 2014, Pierre Lison - INF5820 course 46
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® Specialised algorithms exist to perform this
kind of search operations efficiently

® Most well-known decoding algorithm is Viterbi

® Viterbi processes the observation sequence left to right
and calculates the state probabilities at the current step
based on the previous step

® Other algorithms also possible to perform e.g. multi-pass
decoding (generate N-best results)

See section 6.4,9.6 and 10.1 of Martin & Jurafsky for details
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U}l ASR evaluation

® Standard evaluation metric: Word Error Rate

® Measures how much the utterance hypothesis h differs
from the «gold standardy transcription t"

® Relies on a2 minimum edit distance between
h and t’, counting the number of word
substitutions, insertions and deletions

Word Error Rate — 100 5 Lusertions + Substitutions + Deletions

Number of words in transcription
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Ul ASR evaluation

® Examples of evaluation:

Gold standard | yes can you inow rotate Gold standard

o Lo L thereljis|five) and
Transcription this triangle Transcription liff

yes can you|not|rotate
. . ~
this triangle(there

| |

ASR hypothesis ASR hypothesis the|size Jand

+
WER = 100 x - WER = 100 x
@ 2014, Pierre Lison - INF5820 course 49

UiO ¢ University of Oslo

® We introduced some basic concepts of phonetics,
such as phones, pitch or loudness

® Speech recognition: Find ("decode") the most
likely utterance(s) for a speech signal, based on two
probabilistic models:

® Acoustic model: likelihood of observed acoustic features for each
possible (sub-)phone

® [ anguage model: likelihood of particular sequence of phones

® Evaluation of ASR results via edit-distance metric
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Next lecture

® Next Friday, we'll move to the next step in the
processing pipeline: natural language understanding

(NLU)
® We'll review some of the core tasks that need to
be achieved there:
® Correction of disfluencies
® Semantic parsing
® Reference resolution

® Dialogue act recognition
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