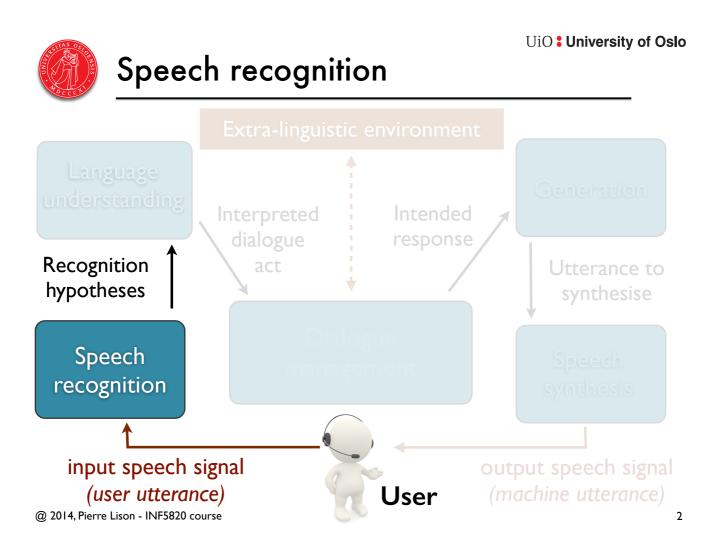
UiO **Conversity of Oslo**

INF5820: Speech recognition

Pierre Lison, Language Technology Group (LTG) Department of Informatics

Fall 2014



3

UiO **University of Oslo**

- Introduction to phonetics
- Speech recognition
- Summary

Introduction to phonetics

- Articulatory phonetics
- Pronunciation variation
- Acoustic phonetics
- Speech recognition
- Summary

@ 2014, Pierre Lison - INF5820 course

UiO : University of Oslo

5

Phonetics

- Phonetics = scientific study of speech sounds
 - Divided in articulatory, acoustic and auditory phonetics
- The basic phonetic unit is the **phone**, which is a distinctive speech sound
- The IPA (International Phonetic Alphabet) is a standard for transcribing the sounds of all human languages
 - Currently 107 letters, 52 diacritics, and four prosodic marks
 - A specific language will only use a subset of these sounds
 - Compatible with other codes such as ARPAbet (U.S. English only)

٦

T

Г

IPA transcription

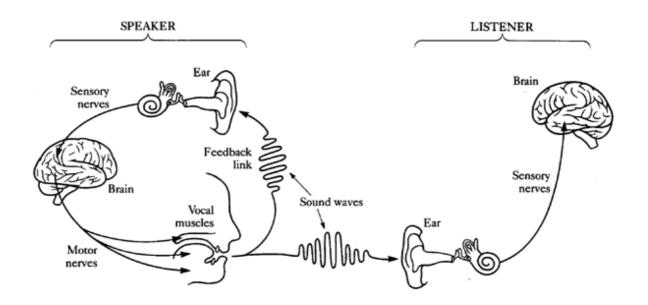
Bokmål	Nordavinden og sola kranglet om hvem av dem som var den sterkeste. Da kom det en mann gående med en varm frakk på seg. De blei enige om at den som først kunne få mannen til å ta av seg frakken skulle gjelde for sterkere enn den andre. Så blåste nordavinden av all si makt, men dess mer han blåste, dess tettere trakk mannen frakken rundt seg, og til sist gav nordavinden opp. Da skinte sola fram så godt og varmt, og straks tok mannen av seg frakken. Og så måtte nordavinden innrømme at sola var den sterkeste av dem.
IPA (Oslo)	["nurra vin-n ɔ 'surln "kranlət ɔm 'vem a dem sm 'var dn "stærkəstə da- 'k"ɔm: de n 'man: gɔ-ənə me n 'varm 'frak: pɔ 'sæ di ble "e:njə ɔm at 'den: sm 'føst k"un-ə fɔ 'man:n tɔ "t"ar a sæ 'frak:ən 'skul-ə "jel:ə fɔ dn "stærkəstə a 'dem- 'sor "blo:stə "nurra vin:n a '?al: sin 'mak"t" men ju 'mer ham "blo:stə ju "t"et:ərə trak- 'man:n 'frak:ən 'runt sæ ɔ tə 'sist mɔt-ə "nurra vin-n "jir .ɔp"- dar "şintə 'surln 'frem sɔ- 'gɔt": ɔ 'varmt" at 'man:ən 'straks 'mɔt-ə "tar a sæ 'frak:ən ɔ 'sor mɔt-ə "nurra vin-n 'in: røm-ə at 'surln 'var n "stærkəstə ?a 'dem:]
IPA (Fyresdal)	["nurra vin-n ɔ 'surla "kranla um 'kven: av dæi som 'va: den "stærkaste 'do: 'kom: de en 'man: "gangande me æn 'varme 'frak:e po seg dæi blær "?e:nige um at dæn som 'fys: k*un-e fo 'man:en te o "t*a:k av se 'fraç:en skul:e "reknas fer en "stærkast av der 'so: 'blu:s "nurra vin-n av 'al: si 'mak*t* men tr 'mæi han 'blu:s tr "t*et:are 'dru:g 'man:en 'fraç:en 'runt seu o tr 'slut: "mot:e "nurra vin-n? je- 'up:* 'do: 'sæin 'su:la 'fram: so 'gø*t: o 'varmt at 'man:n me '?æi 'gon "mot:e "t*a:ke 'a:v se 'fraç:en o 'so: "mot:e "nurra vin-n 've:çen:e ?at 'su:la 'va: den "stærkast av 'ðær]

[Nordavinden og sola, en norsk dialektprøvedatabase på nettet, NTNU, <u>http://www.ling.hf.ntnu.no/nos/</u>]

@ 2014, Pierre Lison - INF5820 course

UiO **University of Oslo**

7



[Denes and Pinson (1993), «The speech chain»]

- Sounds are variations in air pressure
- How are they produced?
 - An **air supply**: the *lungs* (we usually speak by breathing out)
 - A sound source setting the air in motion (e.g. vibrating) in ways relevant to speech production: the *larynx*, in which the *vocal folds* are located
 - A set of 3 filters modulating the sound: the *pharynx*, the *oral tract* (teeth, tongue, palate, lips, etc.) & the *nasal tract*

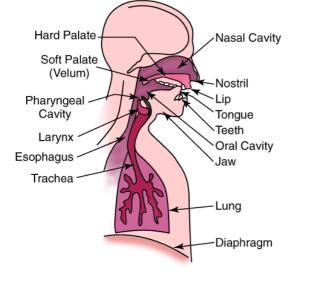
UiO **University of Oslo**

9

Speech production

A few languages also rely on sounds not produced by vibration of vocal folds, such as *click languages* (e.g. Khoisan family in south-east Africa):

Visualisation of the vocal tract via magnetic resonance imaging [MRI]:



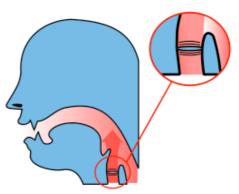
[Speech Production and Articulation Knowledge Group, University of Southern California. <u>http://sail.usc.edu/span/</u>]

@ 2014, Pierre Lison - INF5820 course

 Voiced sounds are made when the vocal folds are

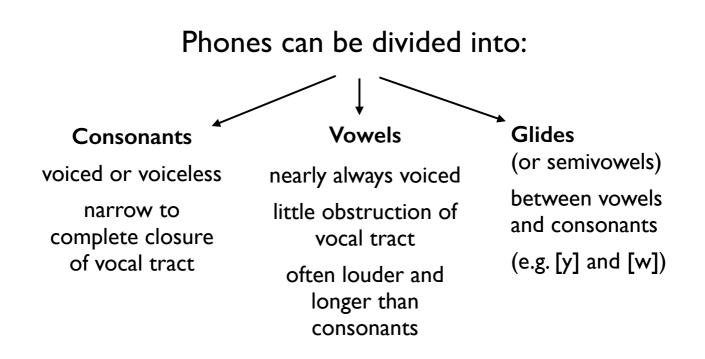
vibrating

- e.g. [b], [d], [g], [v], [z], and all the vowels
- Voiceless sounds are made without such vibration
 - e.g. [p], [t], [k], [f], [s]



UiO: University of Oslo

11



13

UiO **University of Oslo**

Consonants

- Consonants are realised by restricting the airflow
- They can differ in three ways:

Voice vs voiceless Are the vocal folds vibrating?

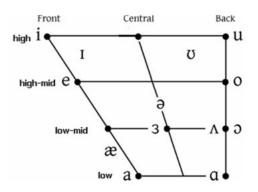
Manner of articulation how does the restriction occur?

- Stop: airflow blocked then released: [b], [t], [k]
- Nasal: through nasal cavity: [n],[m],[ŋ]
- Fricatives: airflow constricted: [f],[v], [s]
- Approximants: articulators are close, but not enough to create turbulent flow: [w],[y],[l],[r]

Place of articulation where does the restriction occur?

- Labial (with the lips): [p],[b],[m]
- Coronal: (tip or blade of tongue):
 [s], [t], [d]
- Guttural (back of the oral cavity,):
 [k], [g], [ŋ]

- Relevant parameters for vowels:
 - *vowel height*: height of highest part of the tongue
 - *vowel backness*: location of this high point in the oral tract
 - Shape of the lips
 - In some languages, distinction between short and long vowels



15

UiO : University of Oslo

Pronunciation variation

- Words can be pronounced very differently:
 - Phonetic processes: aspirations, assimilations, deletions
 - *Co-articulation*: anticipation of next phone by articulators, or perseverance of previous move
 - Influence of various contextual factors: age, gender, environment, rate of speech, dialect, register

• Concept of **phoneme**:

- Abstraction over a set of phones/speech sounds regarded as a single «sound» (in opposition to others) in a given language
- Example: the English /t/ can regroup [t^h], [r] and [t]

Pronunciation variation

Ν	phonetic transcription				Ν	Phonetic Transcription					N Phonetic Transcription							
82	ae	n				2	ax	nx				1	ix	dcl	d			
63	eh	n				2	q	ae	ae	n	d	1	ae	eh	n			
45	ix	n				2	q	ix	n			1	hh	n				
35	ax	n				2	ix	n	dcl	d		1	ix	n	t			
34	en					2	ih					1	ae	ax	n	dcl	d	
30	n					2	eh	eh	n			1	iy	eh	n			
20	ae	n	dcl	d		2	q	eh	nx			1	m					
17	ih	n				2	ix	d	n			1	ae	ae	n	d		
17	q	ae	n			1	eh	m				1	nx					
11	ae	n	d			1	ax	n	dcl	d		1	q	ae	ae	n		
7	q	eh	n			1	aw	n				1	q	ae	ae	n	dcl	d
7	ae	nx				1	ae	q				1	q	ae	eh	n	dcl	d
6	ae	ae	n			1	eh	dcl				1	q	ae	ih	n		
6	ah	n				1	ah	nx				1	aa	n				
5	eh	nx				1	ae	n	t			1	q	ae	n	d		
4	uh	n				1	eh	d				1	?	nx				
4	ix	nx				1	ah	n	dcl	d		1	q	ae	n	q		
4	q	ae	n	dcl	d	1	ey	ih	n	dcl	d	1	eh	n	m			
3	eh	n	d			1	ae	ix	n			1	q	eh	en	dcl		
3	q	ae	nx			1	ae	nx	ax			1	eh	ng				
3	eh					1	ax	ng				1	q	eh	n	q		
2	ae	n	dcl			1	ay	n				1	em					
2	ae					1	ih	ah	n	d		1	q	eh	ow	m		
2	ax	m				1	ae	hh				1	q	ih	n			
2	ax	n	d			1	ih	ng				1	q	ix	en			
2	ae	eh	n	dcl	d	1	ix					1	er					
2	eh	n	dcl	d		1	ae	n	d	dcl			-	-				

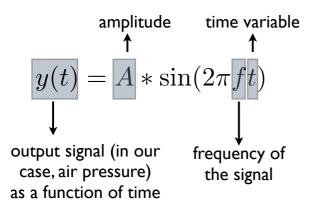
Table 1. 80 pronunciation variants of the word "and" from the Switchboard Transcription Corpus. The variants are listed in order of their frequency. The phonetic symbols are from a transcription system based on Arpabet. The segment [q] denotes a glottal stop. The symbol set and transcription methods are described in [15].

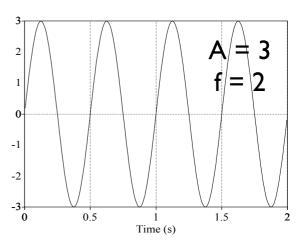
@ 2014, Pierre Lison - INF5820 course

17

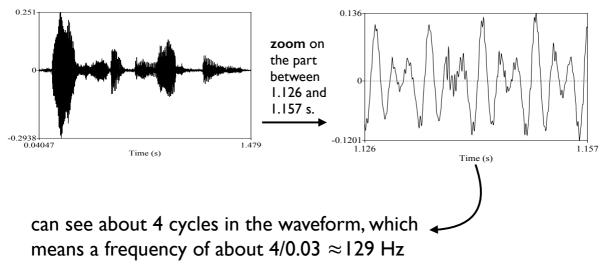
UiO : University of Oslo

- A (speech) sound is a variation of air pressure
 - This variation originates from the speaker's speech organs
 - We can plot a *wave* showing the changes in air pressure over time (zero value being the normal air pressure)





- Of course, speech is more complex than a simple sine function
- But it can still be described using the same mathematical apparatus, in terms of frequency, amplitude etc.



UiO **Conversity of Oslo**

19

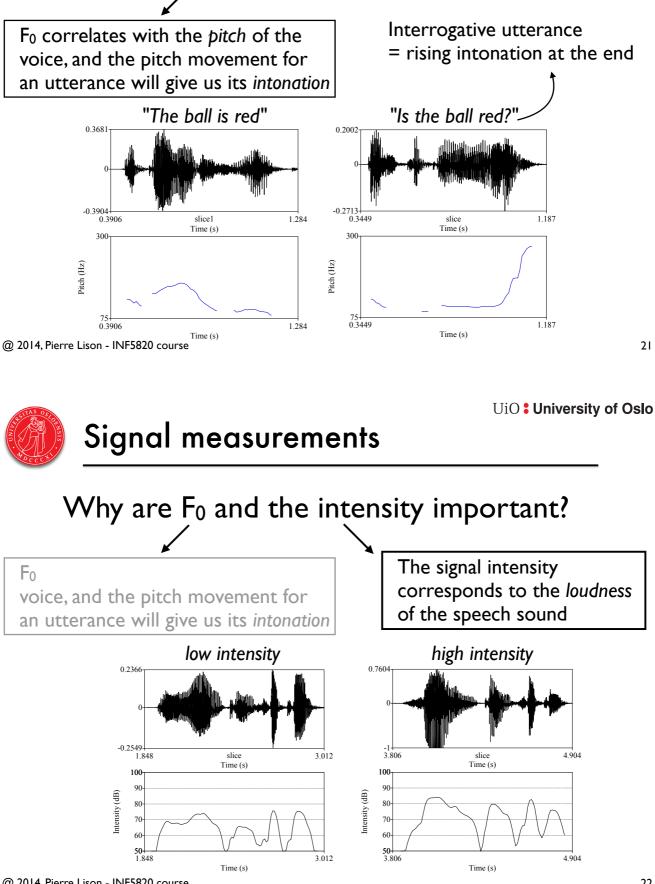
- The fundamental frequency F₀: lowest frequency of the sound wave, corresponding to the speed of vibration of the vocal folds (between 85-180 Hz for male voices and 165-255 Hz for female voices)
- 2. The **intensity**: the signal power normalised to the human auditory threshold, measured in **dB** (decibels):

Intensity = 10
$$\log_{10} \frac{\text{Power}}{P_0} = 10 \log_{10} \frac{1}{NP_0} \sum_{i=1}^N y(t_i)^2$$

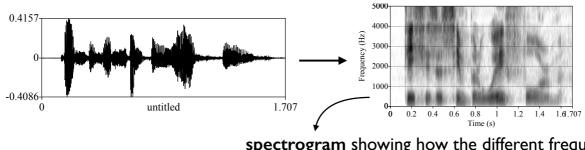
for a sample of N time points $t_1,...,t_N$ P₀ is the human auditory threshold, = 2 x 10⁻⁵ Pa

Note: dB scale is logarithmic, not linear!

Why are F_0 and the intensity important?



- Possible to derive basic phonetic features (such as pitch or loudness) directly from the waveform
- But usually, the phones cannot be recognised so easily
- For this, we need to use a different representation, in terms of the signal's *component frequencies* (spectral analysis, based on Fourier's transform)



spectrogram showing how the different frequencies making up a waveform change over time

@ 2014, Pierre Lison - INF5820 course

23

UiO : University of Oslo

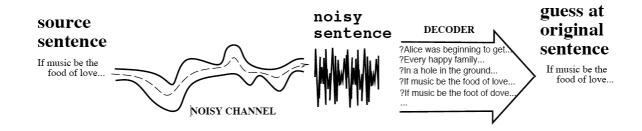
• Introduction to phonetics

- Speech recognition
 - The speech recognition problem
 - Acoustic features

Dutline

- Acoustic modelling
- Language modelling
- Decoding
- Evaluation

Summary



- Give the observation of the noisy sentence (acoustic input), we try to guess the original sentence
- In other words, we observe the input O, and search for the best estimate W of the sentence

UiO **University of Oslo**

25

Formalisation

- Speech recognition as a Hidden Markov Model:
 - The observations is represented as a sequence of individual acoustic observations (e.g. every 10 milliseconds):

$$O = o_1, o_2, o_3, ..., o_m$$

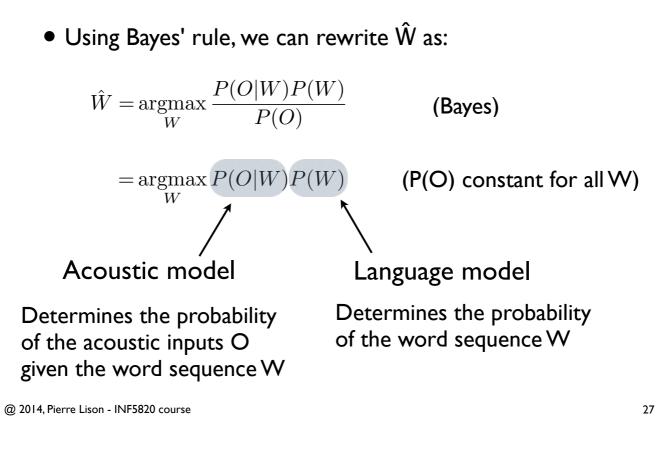
• The (hidden) utterance is a sequence of words:

$$W = w_1, w_2, w_3, ..., w_n$$

• Goal: find the utterance

$$\hat{W} = \operatorname*{argmax}_{W} P(W|O)$$

• But *P*(*W*|*O*) is difficult to estimate directly!



UiO : University of Oslo Formalisation Acoustic features (O) Acoustic model P(O|W) language model P(V) $\hat{W} = «I'm Pierre»$

Acoustic features



Acoustic features (O)

- First step: process the raw speech signal to extract its acoustic features O
 - The extraction is repeated at regular intervals (e.g. 10 ms)
 - The features should measure core properties of the signal
- Mel-Frequency Cepstral Coefficients (MFCC) are a popular way to extract such features
 - Total of 39 real-valued MFCC features for each time frame

@ 2014, Pierre Lison - INF5820 course

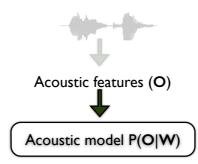
29

UiO **University of Oslo**

MFCC steps

- Step I Analog-to-digital conversion: speech signal is transformed to digital form by sampling it at a given frequency (ex: 44 kHz)
- Step 2 Pre-emphasis: The amount of energy present in the high frequencies (important for speech) are boosted
- Step 3 Windowing: the signal is divided into *frames* of a given size (e.g. 10 ms). The frames might overlap (to ensure no information is lost)
- **Step 4** *Discrete Fourier transform*: spectral analysis of the signal for each time frame (decomposition into component frequencies)
- Step 5 Mel-scale wrapping: map the DFT frequency output onto the so-called Mel scale (scale that model the perceptual sensitivity of the human ear)
- Step 6 Cepstral analysis: taking the log of the frequencies, and then calculating the so-called Inverse Discrete Fourier Transform
- Step 7: Derivation of all features extracted from the signal

Acoustic modelling



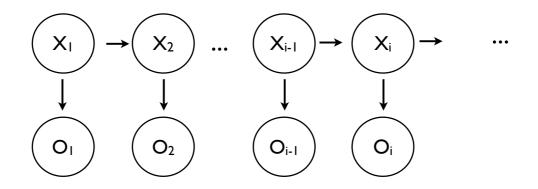
- Acoustic modelling = estimation of P(O|W)
 - W represents an utterance hypothesis (word sequence)
 - O represents a sequence of acoustic features
 - The acoustic model is a *probabilistic mapping* between the acoustic features and the phones making up the utterance

@ 2014, Pierre Lison - INF5820 course

31

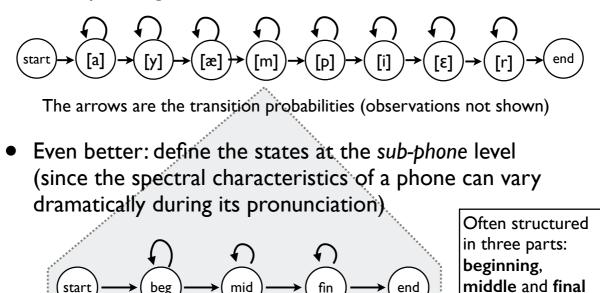
Acoustic modelling: states

- How do we estimate this distribution P(O|W)?
 - Recall that the ASR problem is essentially a Hidden Markov Model (HMM): the real utterance is «hidden» and need to be inferred from the set of acoustic observations
 - But what are exactly the *states* of the model to use?



Acoustic modelling: states

• Each word can be factored into its component **phones**, corresponding to the hidden states



@ 2014, Pierre Lison - INF5820 course

33

UiO: University of Oslo Acoustic modelling: estimation

- We are thus trying to estimate P(o|s)
 - s is a sub-phone state, e.g. the last part of the phone [b]
 - o is in the MFCC case a list of 39 real-valued features
- This distribution can be estimated from speech data, but there are two «challenges»:
 - We don't have direct access to the exact state S in our data (the states are hidden)
 - 2. The acoustic features are real values, not discrete symbols (=infinite number of possible observations!)

Acoustic modelling: estimation

• First challenge: the states are hidden!

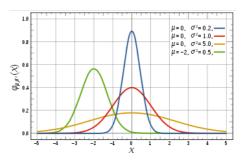
- HMM training problem: Given the observation sequence $O = o_1,...o_n$, estimate both the transition probabilities between states $P(s_i|s_{i-1})$, and the observation probabilities $P(o_i|s_i)$
- It turns out that there exists a standard algorithm for estimating these probabilities
 - Called Forward-Backward, or Baum-Welch algorithm
 - Special case of a generic, iterative method called *Expectation*-Maximization

We are not going to review the details of the algorithm but see Jurafsky & Martin section 6.5 for details

@ 2014, Pierre Lison - INF5820 course

UiO: University of Oslo Acoustic modelling: estimation

- Second challenge: the observations are continuous (39 real values for MFCC)
 - Acoustic models often encoded as *normal* distributions (Gaussians)
 - Each Gaussian is defined by its mean μ and variance σ^2 (both of which can be easily estimated from data)
 - To improve estimates, we can use weighted combinations of multiple Gaussians (= Gaussian Mixture Models)



Question: Assume an acoustic model with 40 different phones, MFCC features and 3 components in the Gaussian mixtures. How many parameters do we need to estimate?

Answer: 40 (nb. phones) × 39 (nb features) × 3 (nb. Gaussians) × 3 (mean, variance & weight of each Gaussian) =14040 35

Acoustic modelling: adaptation

@ 2014, Pierre Lison - INF5820 course

37

Acoustic modelling: adaptation

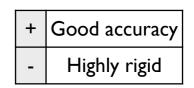
- Often a mismatch between the data on which the acoustic model was trained and real-life conditions:
 - Variations in voice, accents, genre, speech rate, environmental noise, type of microphone, etc.
- But full retraining of the acoustic model is usually not feasible
- One can perform speaker/domain adaptation instead:
 - Generic acoustic model «wrapped» in a context-dependent model
 - Lead to huge improvements in ASR accuracy in recent years

- The second ASR model is the language model
 - Most interesting part for us: we rarely touch the system's acoustic models, but need to provide the domain's language model(s)
- Encodes the likelihood of an utterance P(W)
 - Mapping from words to possible pronunciations is done using a phonetic dictionary: sterkeste -> "stærkasta

39

Language modelling

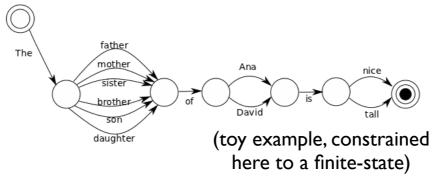
- First option: define P(W) with a hand-crafted grammar
 - The (context-free) grammar must specify all possible utterances for the domain
- Alternatively, one could estimate a *statistical model* from data
 - Need to collect data from the interaction (via e.g.Wizard-of-Oz interactions)



UiO: University of Oslo

+	More flexible
-	Higher WER

- Explicit specification of possible utterances
 - Usually some variant of context-free grammars
 - Can include weights to increase/decrease the likelihood of particular phrases
 - Everything not covered by the grammar is ignored!



UiO: University of Oslo

41

Recognition grammars

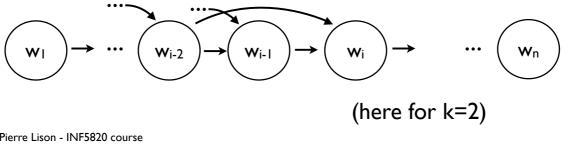
```
<grammar version="1.0" root="simpleGrammar">
<!--Simple grammar for greetings and closings -->
                                                    <rule id="closing">
<rule id="simpleGrammar">
                                                       <item>
   <one-of>
                                                          <one-of>
      <ruleref uri="#greeting"/>
                                                            <item>goodbye</item>
      <ruleref uri="#closing"/>
                                                             <item>bye</item>
   </one-of>
                                                        </one-of>
</rule>
                                                      </item>
<rule id="greeting">
                                                      <item repeat="repeat="0-1">
  <item>
                                                          <ruleref uri= "#name "/>
     <one-of>
                                                       </item>
       <item>hello</item>
                                                    </rule>
        <item>hi</item>
                                                    <rule id= "name ">
   </one-of>
                                                       <one-of>
  </item>
                                                          <item>Pierre</item>
 <item repeat="repeat="0-1">
                                                          <item>Jan Tore</item>
      <ruleref uri= "#name "/>
                                                       </one-of>
   </item>
                                                    </rule>
</rule>
                                                    </grammar>
     ....
```

Statistical language modelling

- How can we estimate P(W) from data?
- The probability P(W) is often factored as a Markov Chain of order k, also called an N-gram:

 $P(w_i|w_{i-1},...,w_1) = P(w_i|w_{i-1},...,w_{i-k})$

Generally, k=2 or 3 (bigram or trigram)



@ 2014, Pierre Lison - INF5820 course

UiO: University of Oslo

43

Statistical language modelling

- The probabilities $P(w_i|w_{i-1},...,w_{i-k})$ can be estimated by counting relative occurrences in the data
- However, «plain» estimation has a problem with low-frequency counts:
 - If the sequence $[w_{i-k}, ..., w_{i-1}, w_i]$ never occurs in the data, the probability $P(w_i|w_{i-1},...,w_{i-k})$ will be set to zero
 - Not a reasonable assumption with limited training data!
 - Solution: use smoothing techniques (e.g. Good-Turing)

See chap. 4 of Jurafsky & Martin for details

- Some speech recognisers allow the language model to be modified «on the fly», at runtime
- We can exploit the context to «prime» parts of the model, and adapt the probabilities to the situation
 - Example: if the system just asked a yes/no question, the user is more likely to answer «yes» or «no»
 - Example: if the environment contains certain objects (e.g. a box), the user is more likely to mention them
- Can lead to big improvements in accuracy

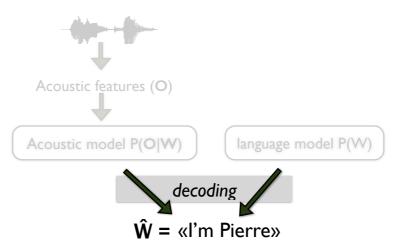
[P. Lison.A salience-driven approach to speech recognition for human-robot interaction, Interfaces: Explorations in Logic, Language and Computation, 2010]

@ 2014, Pierre Lison - INF5820 course

45

UiO **University of Oslo**

- Decoding = search for the most likely word sequence given the observations
- Large search space, but there are various «tricks» to speed up the search (e.g. *dynamic programming*)



- Specialised algorithms exist to perform this kind of search operations efficiently
- Most well-known decoding algorithm is Viterbi
 - Viterbi processes the observation sequence left to right and calculates the state probabilities at the current step based on the previous step
 - Other algorithms also possible to perform e.g. multi-pass decoding (generate N-best results)

See section 6.4, 9.6 and 10.1 of Martin & Jurafsky for details

@ 2014, Pierre Lison - INF5820 course

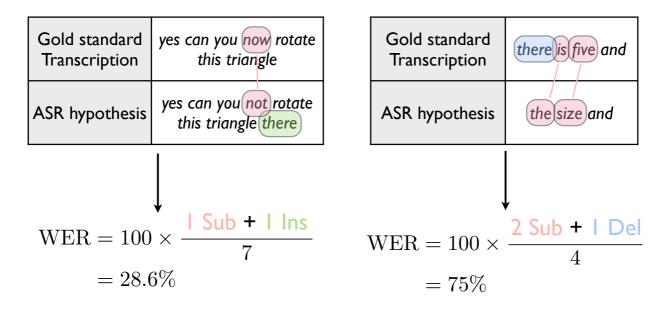
UiO : University of Oslo

47

- Standard evaluation metric: Word Error Rate
 - Measures how much the utterance hypothesis h differs from the «gold standard» transcription t^*
- Relies on a minimum edit distance between h and t^{*}, counting the number of word substitutions, insertions and deletions⁻

Word Error Rate = $100 \times \frac{\text{Insertions} + \text{Substitutions} + \text{Deletions}}{\text{Number of words in transcription}}$

• Examples of evaluation:



@ 2014, Pierre Lison - INF5820 course

49

UiO **University of Oslo**

- We introduced some basic concepts of phonetics, such as phones, pitch or loudness
- Speech recognition: Find ("decode") the most likely utterance(s) for a speech signal, based on two probabilistic models:
 - Acoustic model: likelihood of observed acoustic features for each possible (sub-)phone
 - Language model: likelihood of particular sequence of phones
- Evaluation of ASR results via edit-distance metric

- Next Friday, we'll move to the next step in the processing pipeline: natural language understanding (NLU)
- We'll review some of the core tasks that need to be achieved there:
 - Correction of disfluencies
 - Semantic parsing
 - Reference resolution
 - Dialogue act recognition