INF5820/INF9820

LANGUAGE TECHNOLOGICAL APPLICATIONS

1

Jan Tore Lønning, Lecture 3, 5 Sep. jtl@ifi.uio.no

Machine Translation Evaluation 2

- 1. Automatic MT-evaluation:
 - 1. Word precision and recall (from last week)
 - 2. BLEU
 - 3. Alternatives
 - 4. Evaluation evaluation
 - 5. Criticism
- 2. Evaluation of applied MT-systems

Common evaluation measures in LT

$$\square \operatorname{Recall} = \frac{tp}{tp + fn}$$
$$\square \operatorname{Precision} = \frac{tp}{tp + fp}$$
$$\square \operatorname{F-score} = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$
$$\square \operatorname{F}_{1} = \frac{1}{0.5 \frac{1}{P} + (1 - 0.5) \frac{1}{R}} = \frac{2PR}{R + P}$$

Adapting P, R, F to MT-eval

Precision and Recall of Words

 SYSTEM A:
 Israeli officials responsibility of airport safety

 REFERENCE:
 Israeli officials are responsible for airport security

- Precision $\frac{correct}{output-length} = \frac{3}{6} = 50\%$
- Recall $\frac{correct}{reference-length} = \frac{3}{7} = 43\%$
- F-measure $\frac{\text{precision} \times \text{recall}}{(\text{precision} + \text{recall})/2} = \frac{.5 \times .43}{(.5 + .43)/2} = 46\%$

Chapter 8: Evaluation

Precision and Recall

Metric	System A	System B	
precision	50%	100%	6/~~0.86
recall	43%	100%	⁷ 7 ≈ 0.80
f-measure	46%	100%	$\frac{12}{13} \approx 0.92$
			/13

flaw: no penalty for reordering

Cha	pter	8:	Eval	luation

Position-independent error rate

- □ Similar measure to (word) recall+precision
- □ Reports mistakes not correctness
- □ We skip the details formula

Word Error Rate

• Minimum number of editing steps to transform output to reference

match: words match, no cost
substitution: replace one word with another
insertion: add word
deletion: drop word

Levenshtein distance

 $WER = \frac{substitutions + insertions + deletions}{reference-length}$

Chapter 8: Evaluation

Levenshtein distance used in

- spell-checking
- OCR
- Translation memory

Example

Metric	System A	System B
word error rate (WER)	57%	71%

Chapter 8: Evaluation

Machine Translation Evaluation 2

- 1. Automatic MT-evaluation:
 - 1. Word precision and recall (from last week)
 - 2. BLEU
 - 3. Alternatives
 - 4. Evaluation evaluation
 - 5. Criticism
- 2. Evaluation of applied MT-systems

BLEU

- A Bilingual Evaluation Understudy Score
- Main ideas:
 - Use several reference translations
 - Count precision of n-grams:
 - For each n-gram in output: does it occur in at least one reference?
 - Don't count recall but use a penalty for brevity
 - Why not recall?

BLEU

$$p_{n} = \frac{\sum_{C \in \{Candidate\}} \sum_{n-gram \in C} Count_{clip}(n-gram, C, C.refs)}{\sum_{C \in \{Candidate\}} \sum_{n-gram \in C} Count (n-gram, C)}$$

Candidates:

the set of sentences output by trans. system

 \Box Count(n-gram, C):

□ the number of times *n*-gram occurs in C

- □ Count_{clip}(n-gram, C, C.refs):
 - □ the number of times the *n*.gram occurs in both
 - C and
 - the reference translation for the same sentence
 - where n.gram occurs most frequent

\Box Technicality:

If the same n-gram has several occurrences in a candidate translation sentence, it should not be counted more times than the number of occurrences in the reference sentence with the largest number of occurrences of the same n-gram.

Example, p₃

□ Hyp, C:

One of the girls gave one of the boys one of the boys.

 \Box C-Refs:

A girl gave a boy one of the toy cars

One of the girls gave a boy one of the cars.

□ Count_clip(one of the, C, C-refs)=2

one of the	of the girls	the girls gave	girls gave one
2 (3)	1	1	1
gave one of	of the boys	the boys one	boys one of
0(1)	0 (2)	0(1)	0(1)

 $\square P_3 = 5/11$

BLEU

□ How to combine the n-gram precisions?

$$p_1 \times p_2 \times \cdots \times p_n = \prod_{i=1}^n p_i$$

□ Remember

$$\ln(\prod_{i=1}^{n} p_i) = \ln(p_1 \times p_2 \times \dots \times p_n) = \ln(p_1) + \ln(p_2) + \dots + \ln(p_n) = \sum_{i=1}^{n} \ln p_i$$

 \Box One can add weights, typically ai = 1/n

 $\ln(p_1^{a_1} \times p_2^{a_2} \times \dots \times p_n^{a_n}) = a \ln(p_1) + a 2\ln(p_2) + \dots + a n \ln(p_n)$

How long n-grams?
Max 4-grams seems to work best

Brevity penalty

 $\hfill\square$ c is the length of the candidates

r is the length of the reference translations:
 for each C choose the R most similar in length

□ Penalty applies if c < r:
□ BP = 1 if c ≥ r
□ BP =
$$e^{(1-r/c)}$$
 otherwise
□ BLEU = BP · exp $\sum_{i=1}^{n} w_n \ln p_i$
C∈Candidates
r = $\sum_{C \in Candidates} length(R.sim.C)$
This is correct
Error in K:SMT
□ $\ln BLEU = \min(1 - \frac{r}{c}, 0) + \sum_{i=1}^{n} w_n \ln p_i$

Machine Translation Evaluation 2

- 1. Automatic MT-evaluation:
 - 1. Word precision and recall (from last week)
 - 2. BLEU
 - 3. Alternatives
 - 4. Evaluation evaluation
 - 5. Criticism
- 2. Evaluation of applied MT-systems

NIST score

- National Institute of Standards and Technology
- Evaluated BLEU score further
- Proposed an alternative formula:
 - N-grams are weighed by their inverse frequency
 - Sums (instead of products) of counts over n-grams
 - Modified Brevity Penalty
- Freely available software

Machine Translation Evaluation 2

- 1. Automatic MT-evaluation:
 - 1. Word precision and recall (from last week)
 - 2. BLEU
 - 3. Alternatives
 - 4. Evaluation evaluation
 - 5. Criticism
- 2. Evaluation of applied MT-systems

Evaluating the automatic evaluation

- □ Is the automatic evaluation correct?
- □ Yes, if it gives the same results as human translators.
 - Same results best measured as ranking of MT systems

BLEU – original paper

Figure 2: Machine and Human Translations

S1, S2, S3 – different MT systems

Pearson's Correlation Coefficient

- Two variables: automatic score x, human judgment y
- Multiple systems (x_1, y_1) , (x_2, y_2) , ...
- Pearson's correlation coefficient r_{xy}:

$$r_{xy} = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{(n-1) \ s_x \ s_y}$$

Note:

mean
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

variance $s_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$

Chapter 8: Evaluation

Machine Translation Evaluation 2

- 1. Automatic MT-evaluation:
 - 1. Word precision and recall (from last week)
 - 2. BLEU
 - 3. Alternatives
 - 4. Evaluation evaluation
 - 5. Criticism
- 2. Evaluation of applied MT-systems

Shortcomings of automatic MT

- Re-evaluating the Role of BLEU in Machine Translation Research, 2006
 - Chris Callison-Burch, Miles Osborne, Philipp Koehn
- \Box Theoretically:
 - From a reference translation one may
 - Construct a string of words, which:
 - Gets a high BLEU score
 - Is gibberish
- □ Empirically: (next slides)

Evidence of Shortcomings of Automatic Metrics

Post-edited output vs. statistical systems (NIST 2005)

Chapter 8: Evaluation

Automatic evaluation

Cheap

- Reusable in development phase
- A touch of objectivity
- Useful tool for machine learning, e.g. reranking
- Does not measure MT quality, only (more or less) correlated with MT quality
- S Favors statistical approaches, disfavors humans
- The numbers don't say anything across different evaluations
 Depends on number and type of reference translations
- Danger of system tuning towards BLEU on the cost of quality
 In particular in machine learning

Hypothesis testing

- □ You may skip sec. 8.3
- □ Though:
 - 8.3.1 for they who have INF5830
 - 8.3.2, when you have 2 different systems
 - You might evaluate first one system, then the other on the whole material and compare the results
 - Often better: Compare item by item which system is the better and do statistics on the results

Machine Translation Evaluation 2

- 1. Automatic MT-evaluation:
 - 1. Word precision and recall (from last week)
 - 2. BLEU
 - 3. Alternatives
 - 4. Evaluation evaluation
 - 5. Criticism
- 2. Evaluation of applied MT-systems

MT Evaluation – a broader perspective

- \Box (Human) MT-evaluation:
 - Long history,
 - e.g. the ALPAC-report 1966
 - Research field on its own
- Evaluation distinctions:

- A larger system with MT as a part vs the MT module
- The whole MT system or its parts
 - "black box" vs "glass box"
- Text vs task (instructions for assembling a bookcase)
- Text vs reading understanding

MT Evaluation from outside

- □ What are we willing to give up (no FAHQT?)
- □ The consumer perspective:
 - Price
 - Speed
 - Covered language pairs
 - Maintenance cost
 - Cost and speed of post-editing
 - Training costs

Conclusions

- Evaluation of MT can be done with respect to various properties
- Particularly quality
- Automatic evaluation
 - Pros
 - Cons

Very good Good Average		EXCE	llent	ad	
Average	3	J L	end go	900	
		0	Ave	rage	