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Machine Translation Evaluation 2 

1. Automatic MT-evaluation: 

1. Word precision and recall (from last week) 

2. BLEU 

3. Alternatives  

4. Evaluation evaluation 

5. Criticism 

2. Evaluation of applied MT-systems 

 



Common evaluation measures in LT 
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Adapting P, R, F to MT-eval 

 Precision =  

 

 Recall = 
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Position-independent error rate 

 Similar measure to (word) recall+precision 

 Reports mistakes – not correctness 

 We skip the details - formula 



Levenshtein distance used in  

• spell-checking 

• OCR 

• Translation memory 
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BLEU 

 A Bilingual Evaluation Understudy Score 

 Main ideas: 

 Use several reference translations 

 Count precision of n-grams: 

 For each n-gram in output: 

 does it occur in at least one reference? 

 Don’t count recall but use a penalty for brevity 

 Why not recall? 



BLEU 

 Candidates: 

 the set of sentences output by trans. system 

 Count(n-gram, C): 

 the number of times n-gram occurs in C 

 Countclip(n-gram, C, C.refs): 

 the number of times the n.gram occurs in both  

 C and  

 the reference translation for the same sentence  

 where n.gram occurs most frequent 
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 Technicality: 

 If the same n-gram has several occurrences in a 

candidate translation sentence, it should not be counted 

more times than the number of occurrences in the 

reference sentence with the largest number of 

occurrences of the same n-gram. 

 



Example, p3 

 Hyp, C:  

 One of the girls gave one of the boys one of the boys. 

 C-Refs: 

 A girl gave a boy one of the toy cars 

 One of the girls gave a boy one of the cars. 

 Count_clip(one of the, C, C-refs)=2 

 

 

 

 

 P3 = 5/11 

 

 

one of the of the girls the girls gave girls gave one 

2 (3) 1 1 1 

gave one of of the boys the boys one boys one of 

0 (1) 0 (2) 0 (1) 0 (1) 



BLEU 

 How to combine the n-gram precisions? 

 

 

 Remember 

 

 

 One can add weights, typically ai = 1/n 

 

 

 How long n-grams? 

 Max 4-grams seems to work best 
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Brevity penalty 

 c is the length of the candidates 

 r is the length of the reference translations: 

 for each C choose the R most similar in length 

 

 Penalty applies if c < r: 

 BP = 1   if c > r 

 BP =              otherwise 
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NIST score 

 National Institute of Standards and Technology 

 Evaluated BLEU score further 

 Proposed an alternative formula: 

 N-grams are weighed by their inverse frequency 

 Sums (instead of products) of counts over n-grams 

 Modified Brevity Penalty 

 Freely available software 
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Evaluating the automatic evaluation 

 Is the automatic evaluation correct? 

 Yes, if it gives the same results as human translators. 

 Same results best measured as ranking of MT systems 



BLEU – original paper 

H1, H2 – 2 different human translations 

S1, S2, S3 – different MT systems 
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Shortcomings of automatic MT 

 Re-evaluating the Role of BLEU in Machine 

Translation Research, 2006 

 Chris Callison-Burch, Miles Osborne, Philipp Koehn 

 Theoretically: 

 From a reference translation one may 

 Construct a string of words, which: 

 Gets a high BLEU score 

 Is gibberish 

 Empirically: (next slides) 





Automatic evaluation 

 Cheap 

 Reusable in development phase 

 A touch of objectivity 

 Useful tool for machine learning, e.g. reranking 

 

 Does not measure MT quality,  
only (more or less) correlated with MT quality 

 Favors statistical approaches, disfavors humans 

 The numbers don’t say anything across different evaluations 

 Depends on number and type of reference translations 

 Danger of system tuning towards BLEU on the cost of quality 

 In particular in machine learning 



Hypothesis testing 

 You may skip sec. 8.3 

 Though: 

 8.3.1 for they who have INF5830 

 8.3.2, when you have 2 different 

systems 

 You might evaluate first one system, 

then the other on the whole material 

and compare the results 

 Often better: Compare item by item 

which system is the better and do 

statistics on the results 
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MT Evaluation – a broader perspective 

 (Human) MT-evaluation: 

 Long history,  

 e.g. the ALPAC-report 1966 

 Research field on its own 

 Evaluation distinctions: 

 A larger system with MT as a part vs the MT module 

 The whole MT system or its parts  

 ”black box” vs ”glass box” 

 Text vs task (instructions for assembling a bookcase) 

 Text vs reading understanding 

 



MT Evaluation from outside 

 What are we willing to give up (no FAHQT?) 

 The consumer perspective: 

 Price 

 Speed 

 Covered language pairs 

 Maintenance cost 

 Cost and speed of  

post-editing 

 Training costs 



Conclusions 

 Evaluation of MT can be  

done with respect to 

various properties 

 Particularly quality 

 Automatic evaluation 

 Pros 

 Cons 

 


