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Today 

 Statistical machine translation: 

 The noisy channel model 

 Word-based 

 IBM model 1 

 Training 
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SMT example 

Pos4 – pos 6 (1x3x3 many) Pos5 – pos 7 (5x3x3 many) 

a right with 2.7x10-12 right with building 1.7x10-18 

a right of 1.5x10-10 right with construction 5.4x10-18 

a right by 9.7x10-12 right with barley 8.7x10-19 

… … 

a course of 1.5x10-14 course of barley 1.5x10-16 

En kokk lagde en  rett med  bygg . 

a   0.9 chef  0.6 made    0.3 a 0.9 right   0.19 with  0.4 building   0.45 

… cook  0.3 created   0.25 … straight  0.17 by   0.3 construction  0.33 

… prepared  0.15 court   0.12 of  0.2 barley  0.11 

constructed 0.12 dish     0.11 … … 

cooked 0.05 course   0.07 

… … 

Similarly for: 

• pos 0-2 (2x3) 

• pos 1-3 

• pos 2-4 

• pos 3-5 (4x5) 

• pos 6-8 
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Statistical learning

Goal

Find the best (most probable) English translation Ê of a
foreign sentence F .
Ê = arg max

E
P(E | F )

3 steps (common to many tasks)
1 A model. We may not have seen F before. The model will

determine what to look for.
2 We must learn (or estimate) the parameters of the model

from data.
3 We must have a method for using the model to find the

best E given F , decoding.
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Noisy channel models

Applying Bayes’ formula
Ê = arg max

E
P(E | F )

= arg max
E

P(F | E)

P(F )
P(E)

= arg max
E

P(F | E)P(E)

Turning the picture: consider F as a translation (distortion)
of E , and ask which E?
Why?

Suitable for approximations.
Makes use of language model P(E).

cf. K:SMT slide 34
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Noisy channels

The noisy channel model
See a distortion of the original.
Goal: guess the original
J&M Fig. 5.23, 9.2 og 25.15

Example
Speech recognition: Sounds a distortion of writing.
Tagging: Word sequence distortion of tag sequence
Translation: Source language a distortion of target
language.
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Separating the models

Starting point:

Ê = arg max
E

P(F | E)P(E)

The models
We can build and train two separate models:

The language model: P(E)
The translation model: P(F | E)

Decoding must use both models simultaneously
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Language model

Goal
Estimate the probability P(E) = P(e1e2 . . . en) of the string of
words e1e2 . . . en

n-gram model

P(e1e2 . . . en)

= P(e1)P(e2 | e1)P(e3 | e1,e2) · · ·P(en | e1e2 . . . en−1)

≈ P(e1)P(e2 | e1)P(e3 | e2) · · ·P(en | en−1)

= P(e1)
n−1∏
i=1

P(ei+1 | ei)
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Comments:

Uses the (incorrect) Markov-assumption
P(e(j+1) | e1e2 . . . ej) ≈ P(ej+1 | ej)

Last slide shows the bigram model. Could alternatively use
trigram, quadgram, . . .
Trigram: P(e1e2 . . . en) =

∏n−1
i=1 P(ei+1 | ei−1,ei)

For all n-grams : special symbols for start and end:
What is the probability of being the first word of a sentence?
What is the probability of being the last word of a sentence?
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The translation model

Several alternatives:
Word based

In particular the IBM-models: 1, 2, 3, 4, 5
Phrase based

Parameter estimation often done on top of a word-based
model.

Syntax based
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Word-based models

Suppose
Source and target sentence always the same length
Word-order is preserved.
A one-to-one correspondence between words

The translation would be like HMM-tagging
Translation Tagging
source language word word
target language word tag
n-grams for targ. lang. n-grams of tags
source sentence sentence to be tagged
word translation probs. probability for word given tag

See simplified SMT example on slides from first MT
lecture.
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Word-based translation models

But translation reorders, deletes, adds, goes many-to-one,
one-to-many and many-to-many.
We cannot apply HMM directly

Two parts to word-based translation
1 What is the probability that source word a is translated as

target word b?
2 Alignment: Which word(s) in the target language sentence

is the translation of which word(s) in the source sentence?

J& M Figure 25.17, 25.20, 25.21, 25.22
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Alignment 

 Length of English string: k (=7) 

 Length of foreign string: m (=9) 

 An alignment is a vector of length m, each entry a 
number between 0 and k 

 The example: 

 <a1, a2, …, a9,> = <1, 3, 4, 4, 4, 0, 5, 7, 6> 
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Alignment 

 Artificial restrictions: 

 Several foreign words may be aligned with the same E 
word 

 A foreign word cannot be aligned to more than one E word 
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IBM Model 1 

 Consider all possible alignments a: 

 

 

 For each alignment use the generative model: 

 

 

 Simplify the model – make assumptions 
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Figure 25.23 
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 The generative model: 

 Choose the length of the foreign string 

 Which E word translates to the first F word 

 What is the translation of this word? 

 

 Which E word translates to the j-th  

F word given the choices so far 

 What is the translation of this word 

 given the choices so far 
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Assumptions, approximations 

              is a constant, independent of m and E 

    

 all alignments the same probability (adds to 1) 

   

 the word translation probability only depends on 

source word 
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IBM model 1 

 Simplifies to 
 
 
 
 
 

  is a normalisation factor 

 Formula 4.7 in the SMT book 

 (The book goes f e, not e  f) 
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Parameter estimation 

 If the training corpus was aligned, the model could 
be learned by counting: 

 

 

 If we had known the translation probabilities, we 
could have found the most probable alignment. 

 We neither know word probabilities nor alignment: 
Chicken and egg problem 

 EM-algorithm: we may learn the two simultaneously 
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Training – the idea 

1. From the translation probabilities, we may estimate 
alignment probabilities 

 (We do not choose only the best alignment) 

2. From alignment probabilities, we may recalculate 
translation probabilities 

 

 By alternating between (1) and (2), the numbers 
converge towards better results 

 For IBM Model 1 it may be proved that they converge 
towards a global optimum 
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Two ways to describe the algorithm 

Intuitive 

 Proceed 

 1. Translation prob 

 1. Alignment prob 

 2. Translation prob  

 2. Alignment prob  

 3. Translation prob  

 Etc 

 J&M, sec 25.6.1, example 

 Intractable in practice 

 

Efficient 

 Sidestep alignment 
probs: 

 1. Translation prob 

 2. Translation prob  

 3. Translation prob  

 Etc 

 K:SMT, sec 4.2.3, 
example 

 How it gets implemented 
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Training – the intuitive approach 

1. Initalize the parameter values t(f |e) for pairs of 

words f and e . 

 With no info, initalize them uniformly: 

Each word f in the foreign language is an equally 

likely translation of the word e. 

2. For each pair f, e of sentences in the corpus, use t  

to calculate the probabilities P(a | f, e) to all 

possible alignments a of the two sentences. 

 (Called the expectation step, apply model to data) 
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Training – the intuitive approach 

3. Collect fractional counts, tc(f |e): 

 («How many times e is translated as f» )  

1. First, calculate this, c(f |e ; f, e) for each sentence f, e, 

where we count: 

 how many times e is aligned to f by each alignment, 

 weighed by the probability of the alignment. 

2. Then add over all sentences  

to get  


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ef
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Training – the intuitive approach 

4. Calculate the new translation probabilities 

 

 

 where f ’ varies over all foreign words 

 (Called the maximization step, estimate model from 

counts) 

5. Repeat from 2 as long as you like 

 

𝑡 𝑓 𝑒 =
𝑡𝑐(𝑓|𝑒)

 𝑡𝑐(𝑓′|𝑒)𝑓′

 Errors in formula 

4.14 in K:SMT 
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Assign probabilities to alignments 

 Goal: compute  

 Since 

 we have 

 

 

 We know 
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Example – the intuitive way 

 Corpus 

e2: Dog bit dog 

f2: Hund bet hund 

e1: Dog barked 

f1: Hund bjeffet 

3 English words: dog bit barked 

3 foreign words: hund bjeffet bet 
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Step 1 initialization 

 Uniform 

 Observe that we include the last line since an f-

word may be aligned to 0. 

t(hund|dog) = 1/3 t(bet|dog) = 1/3 t(bjeffet|dog) = 1/3 

t(hund|bit) = 1/3 t(bet|bit) = 1/3 t(bjeffet|bit) = 1/3 

t(hund|barked) = 1/3 t(bet|barked) = 1/3 t(bjeffet|barked) = 1/3 

t(hund|0) = 1/3 t(bet|0) = 1/3 t(bjeffet|0) = 1/3 
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Step 2: Alignment probabilities 

 Sentence pair 1: 

 9 possible alignments: 

 <0,0>, <0,1>, <0,2>, <1,0>, <1,1>, 
<1,2>,<2,0>,<2,1>, <2,2> 

 Each equally probable: 1/9 

 (call this a1: e.g. a1(<0,1>)=1/27) 

 Sentence pair 2: 

 64 possible alignments: 

 <0,0,0>, <0,0,1>, … <3,3,3> 

 Each equally probable: 1/64 

 (call this a2.) 

 Or, the hard way (next slide) 

 

e2: Dog bit dog 

f2: Hund bet hund 

e1: Dog barked 

f1: Hund bjeffet 
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Step 2: The hard way 

 Sentence pair 2: 

 64 possible alignments: 

 <0,0,0>, <0,0,1>, … <3,3,3> 

 Each translation probability: 1/27 

 

e2: Dog bit dog 

f2: Hund bet hund 
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Step 3.1: Collect fractional counts 

Calculate c(f |e ; f, e) for each sentence f, e: 

 Example: f =hund, e = dog, f1, e1: 

 There are 3 alignments that connect them: 

<1,0>, <1,1>, <1,2> 

 c(hund|dog; f1, e1) =   

a1(<1,0>)+ a1(<1,1>)+ a1(<1,2>)=3*(1/9) = 1/3 

 

 
c(hund|dog; f1, e1)= 1/3  c(bjeffet|dog; f1, e1) = 1/3 

c(hund|barked; f1, e1) = 1/3 c(bjeffet|barked; f1, e1) = 1/3 

c(hund|0; f1, e1) = 1/3 c(bjeffet|0; f1, e1) = 1/3 

e1: Dog barked 

f1: Hund bjeffet 
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Step 3.1: Collect frac. counts ctd 

f2, e2: 

 f =bet, e = bit 

 16 alignments connect them: <x,2,z> for x,z in {0,1,2,3} 

 c(bet|bit; f2, e2) =  16/64 = 1/4 

 f =bet, e = dog 

 all alignments <x,1,z> and <x,3,z> for x,z in {0,1,2,3} 

 c(bet|dog; f2, e2) =  2*16/64 = 1/2 

 

 

 

c(hund|dog; f2, e2)= 1 c(bet|dog; f2, e2) = 1/2 

c(hund|bit; f2, e2) = 1/2 c(bet|bit; f2, e2) = 1/4 

c(hund|0; f2, e2) = 1/2 c(bet|0; f2, e2) = 1/4 

e2: Dog bit dog 

f2: Hund bet hund 
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Step 3.2: Total counts 

tc(hund|dog) = 1+1/3  tc(bet|dog) = 1/2 tc(bjeffet|dog) = 1/3 tc(*|dog)=4/3+1/2+1/3

=13/6 

tc(hund|bit) = ½ tc(bet|bit) = ¼ tc(bjeffet|bit) = 0 tc(*|bit)=3/4 

tc(hund|barked) = 1/3 tc(bet|barked) = 0 tc(bjeffet|barked) = 1/3 tc(*|barked) =2/3 

tc(hund|0) = ½+1/3 tc(bet|0) = 1/4 tc(bjeffet|0) = 1/3 tc(*|0)=17/12 


),(

),;|()|(
ef

efefceftc
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Step 4: new trans. probabilities 

e f t(f|e) exact decimal  

0  hund  (5/6)/(17/12) 10/17 0.588235  

0  bet  (1/4)/(17/12) 3/17 0.176471  

0  bjeffet  (1/3)/(17/12) 4/17 0.235294  

dog  hund  (4/3)/(13/6) 8/13 0.615385  

dog  bet  (1/2)/(13/6) 3/13 0.230769  

dog  bjeffet  (1/3)/(13/6) 2/13 0.153846  

bit  hund  (1/2)/(3/4) 2/3 0.666667  

bit  bet  (1/4)/(3/4) 1/3 0.333333  

barked  hund  (1/3)/(2/3 1/2 0.5  

barked  bjeffet  (1/3)/(2/3) 1/2 0.5  

𝑡 𝑓 𝑒 =
𝑡𝑐(𝑓|𝑒)

 𝑡𝑐(𝑓′|𝑒)𝑓′
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Repeat: Step 2, sentence 1 

 9 different alignments 

 P’(a) = c P(a, f1 | e1 ) 

 P(a) = P(a| e1, f1) 

 

      P’ P=P’/1,4145436 

P’(<0,0>) = t(hund|0)*t(bjeffet|0)= (10/17)*(3/17)= 0,103806 0,0733848 

P’(<0,1>)= t(hund|0)*t(bjeffet|dog)= (10/17)*(2/13)= 0,0904977 0,0639766 

P’(<0,2>)= t(hund|0)*t(bjeffet|barked)= (10/17)*(1/2)= 0,294118 0,207924 

P’(<1,0>) = t(hund|dog)*t(bjeffet|0)= (8/13)*(3/17)= 0,108597 0,0767718 

P’(<1,1>) = t(hund|dog)*t(bjeffet|dog)= (8/13)*(2/13)= 0,0946746 0,0669294 

P’(<1,2>) = t(hund|dog)*t(bjeffet|barked)= (8/13)*(1/2)= 0,307692 0,217520 

P’(<2,0>) = t(hund|barked)*t(bjeffet|0)= (1/2)*(3/17)= 0,0882352 0,06237715 

P’(<2,1>)= t(hund|barked)*t(bjeffet|dog)= (1/2)*(2/13)= 0,0769231 0,05438015 

P’(<2,2>)= t(hund|barked)*t(bjeffet|barked)= (1/2)*(1/2)= 0,25 0,176735 

Sum of P’s 1,4145436   

e1: Dog barked 

f1: Hund bjeffet 
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Repeat: Step 2, sentence 2 

 64 different alignments 

 Home work til next week! 

 How many alignments if the sentences are 10 words 

long? 

 That’s why we need a smarter way. 

 To be continued … 
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