# INF5820/INF9820

### LANGUAGE TECHNOLOGICAL APPLICATIONS

1

Jan Tore Lønning, Lecture 4, 10 Sep. jtl@ifi.uio.no



# Statistical machine translation:

- The noisy channel model
  - Word-based
    - IBM model 1
- □ Training

### **Noisy Channel Model**



- Applying Bayes rule also called noisy channel model
  - we observe a distorted message R (here: a foreign string f)
  - we have a model on how the message is distorted (here: translation model)
  - we have a model on what messages are probably (here: language model)
  - we want to recover the original message S (here: an English string e)

## SMT example

| En    | kokk     | lagde            | en    | rett          | med      | bygg              | • |
|-------|----------|------------------|-------|---------------|----------|-------------------|---|
| a 0.9 | chef 0.6 | made 0.3         | a 0.9 | right 0.19    | with 0.4 | building 0.45     |   |
| •••   | cook 0.3 | created 0.25     | •••   | straight 0.17 | by 0.3   | construction 0.33 |   |
|       | •••      | prepared 0.15    |       | court 0.12    | of 0.2   | barley 0.11       |   |
|       |          | constructed 0.12 |       | dish 0.11     | •••      |                   |   |
|       |          | cooked 0.05      |       | course 0.07   |          |                   |   |
|       |          |                  |       | •••           |          |                   |   |

|                 | Pos4 – pos 6 (1x3x3 many) |                       | Pos5 – pos 7 (5x3x3 many) |                       |
|-----------------|---------------------------|-----------------------|---------------------------|-----------------------|
| Similarly for:  | a right with              | 2.7x10 <sup>-12</sup> | right with building       | 1.7x10 <sup>-18</sup> |
| • pos 1-3       | a right of                | 1.5x10 <sup>-10</sup> | right with construction   | 5.4x10 <sup>-18</sup> |
| • pos 2-4       | a right by                | 9.7x10 <sup>-12</sup> | right with barley         | 8.7x10 <sup>-19</sup> |
| • pos 3-5 (4x5) |                           |                       |                           |                       |
| pos 0-0         | a course of               | 1.5x10 <sup>-14</sup> | course of barley          | 1.5x10 <sup>-16</sup> |

### Statistical Machine Translation - SMT INF5820

Jan Tore Lønning

Department of Informatics Universitety of Oslo

Jan Tore Lønning Statistical Machine Translation - SMT

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

### Statistical learning

#### Goal

Find the best (most probable) English translation Ê of a foreign sentence F.

• 
$$\hat{E} = rg\max_{E} P(E \mid F)$$

#### 3 steps (common to many tasks)

- A model. We may not have seen F before. The model will determine what to look for.
- We must learn (or estimate) the parameters of the model from data.
- We must have a method for using the model to find the best *E* given *F*, decoding.

### Noisy channel models

Applying Bayes' formula

$$\hat{E} = \arg \max_{E} P(E \mid F)$$

$$= \arg \max_{E} \frac{P(F \mid E)}{P(F)} P(E)$$

$$= \arg \max_{E} P(F \mid E) P(E)$$

- Turning the picture: consider *F* as a translation (distortion) of *E*, and ask which *E*?
- Why?
  - Suitable for approximations.
  - Makes use of language model P(E).
- of. K:SMT slide 34

#### The noisy channel model

- See a distortion of the original.
- Goal: guess the original
- J&M Fig. 5.23, 9.2 og 25.15

#### Example

- Speech recognition: Sounds a distortion of writing.
- Tagging: Word sequence distortion of tag sequence
- Translation: Source language a distortion of target language.

ヘロト ヘアト ヘビト ヘビト

#### Starting point:

$$\hat{E} = \operatorname*{arg\,max}_{E} P(F \mid E) P(E)$$

#### The models

• We can build and train two separate models:

- The language model: P(E)
- The translation model: P(F | E)
- Decoding must use both models simultaneously

ヘロト ヘアト ヘビト ヘビト

ъ

#### Goal

Estimate the probability  $P(E) = P(e_1e_2...e_n)$  of the string of words  $e_1e_2...e_n$ 

#### n-gram model

$$P(e_{1}e_{2}...e_{n}) = P(e_{1})P(e_{2} | e_{1})P(e_{3} | e_{1}, e_{2})\cdots P(e_{n} | e_{1}e_{2}...e_{n-1}) \\ \approx P(e_{1})P(e_{2} | e_{1})P(e_{3} | e_{2})\cdots P(e_{n} | e_{n-1}) \\ = P(e_{1})\prod_{i=1}^{n-1}P(e_{i+1} | e_{i})$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- Uses the (incorrect) Markov-assumption  $P(e_{(j+1)} | e_1 e_2 \dots e_j) \approx P(e_{j+1} | e_j)$
- Last slide shows the bigram model. Could alternatively use trigram, quadgram, ...
- Trigram:  $P(e_1e_2...e_n) = \prod_{i=1}^{n-1} P(e_{i+1} | e_{i-1}, e_i)$
- For all n-grams : special symbols for start and end:
  - What is the probability of being the first word of a sentence?
  - What is the probability of being the last word of a sentence?

イロト イポト イヨト イヨト 三日

Several alternatives:

- Word based
  - In particular the IBM-models: 1, 2, 3, 4, 5
- Phrase based
  - Parameter estimation often done on top of a word-based model.
- Syntax based

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

- Suppose
  - Source and target sentence always the same length
  - Word-order is preserved.
  - A one-to-one correspondence between words
- The translation would be like HMM-tagging

| Translation                     | Tagging                        |
|---------------------------------|--------------------------------|
| source language word            | word                           |
| target language word            | tag                            |
| <i>n</i> -grams for targ. lang. | <i>n</i> -grams of tags        |
| source sentence                 | sentence to be tagged          |
| word translation probs.         | probability for word given tag |

See simplified SMT example on slides from first MT lecture.

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

#### Word-based translation models

- But translation reorders, deletes, adds, goes many-to-one, one-to-many and many-to-many.
- We cannot apply HMM directly

#### Two parts to word-based translation

- What is the probability that source word a is translated as target word b?
- Alignment: Which word(s) in the target language sentence is the translation of which word(s) in the source sentence?
  - J& M Figure 25.17, 25.20, 25.21, 25.22

・ 同 ト ・ ヨ ト ・ ヨ ト …







## Alignment



- $\Box$  Length of English string: k (=7)
- $\Box$  Length of foreign string: m (=9)
- An alignment is a vector of length *m*, each entry a number between 0 and k
- $\hfill\square$  The example:

$$\Box < a_1, a_2, ..., a_9, > = <1, 3, 4, 4, 4, 0, 5, 7, 6 >$$

## Alignment





### □ Artificial restrictions:

- Several foreign words may be aligned with the same E word
- A foreign word cannot be aligned to more than one E word

## IBM Model 1

8

Consider all possible alignments a:

$$P(\mathbf{f} \mid \mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})$$

□ For each alignment use the generative model:

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = P(m | \mathbf{e}) \prod_{j=1}^{m} P(a_j | a_1^{j-1}, f_1^{j-1}, m, \mathbf{e}) P(f_j | a_1^j, f_1^{j-1}, m, \mathbf{e})$$

□ Simplify the model – make assumptions

## **Figure 25.23**



$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = P(m | \mathbf{e}) \prod_{j=1}^{m} P(a_j | a_1^{j-1}, f_1^{j-1}, m, \mathbf{e}) P(f_j | a_1^j, f_1^{j-1}, m, \mathbf{e})$$

10

### $\Box$ The generative model:

- **Choose the length of the foreign string**  $P(m | \mathbf{e})$
- Which E word translates to the first F word  $P(a_1 | m, \mathbf{e})$
- What is the translation of this word?
- Which E word translates to the j-th F word given the choices so far
- What is the translation of this word given the choices so far

 $P(a_j | a_1^{j-1}, f_1^{j-1}, m, \mathbf{e})$ 

 $P(f_1 \mid a_1, m, \mathbf{e})$ 

 $P(f_j | a_1^j, f_1^{j-1}, m, \mathbf{e})$ 

## Assumptions, approximations

100

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = P(m | \mathbf{e}) \prod_{j=1}^{m} P(a_j | a_1^{j-1}, f_1^{j-1}, m, \mathbf{e}) P(f_j | a_1^j, f_1^{j-1}, m, \mathbf{e})$$

□  $P(m | \mathbf{e})$  is a constant, independent of *m* and *E* □  $P(a_j | a_1^{j-1}, f_1^{j-1}, m, \mathbf{e}) = (k+1)^{-1}$ 

all alignments the same probability (adds to 1)

$$\square P(f_j | a_1^j, f_1^{j-1}, m, \mathbf{e}) = t(f_j | e_{a_j})$$

the word translation probability only depends on source word

## IBM model 1

12

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = P(m | \mathbf{e}) \prod_{j=1}^{m} P(a_j | a_1^{j-1}, f_1^{j-1}, m, \mathbf{e}) P(f_j | a_1^j, f_1^{j-1}, m, \mathbf{e})$$

□ Simplifies to

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \varepsilon \prod_{j=1}^{m} (k+1)^{-1} t(f_j | e_{a_j})$$
$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \frac{\varepsilon}{(k+1)^m} \prod_{j=1}^{m} t(f_j | e_{a_j})$$

□ ε is a normalisation factor
 □ Formula 4.7 in the SMT book
 ■ (The book goes f→ e, not e → f)

## Parameter estimation

- 13
- If the training corpus was aligned, the model could be learned by counting:

$$t(f_{j} | e_{a_{j}}) = \frac{C(f_{j}, e_{a_{j}})}{\sum_{f} C(f, e_{a_{j}})}$$

- If we had known the translation probabilities, we could have found the most probable alignment.
- We neither know word probabilities nor alignment: Chicken and egg problem
- □ EM-algorithm: we may learn the two simultaneously

## Training – the idea

- 1. From the translation probabilities, we may estimate alignment probabilities
  - (We do not choose only the best alignment)
- 2. From alignment probabilities, we may recalculate translation probabilities
- By alternating between (1) and (2), the numbers converge towards better results
- For IBM Model 1 it may be proved that they converge towards a global optimum

- Incomplete data
  - if we had complete data, would could estimate model
  - if we had model, we could fill in the gaps in the data
- Expectation Maximization (EM) in a nutshell
  - 1. initialize model parameters (e.g. uniform)
  - 2. assign probabilities to the missing data
  - 3. estimate model parameters from completed data
  - 4. iterate steps 2-3 until convergence



- Initial step: all alignments equally likely
- $\bullet\,$  Model learns that, e.g.,  $\mathrm{la}$  is often aligned with the



- After one iteration
- $\bullet$  Alignments, e.g., between  $\mathrm{la}$  and  $\mathrm{the}$  are more likely



- After another iteration
- It becomes apparent that alignments, e.g., between fleur and flower are mor likely (pigeon hole principle)



- Convergence
- Inherent hidden structure revealed by EM



• Parameter estimation from the aligned corpus

# Two ways to describe the algorithm

### Intuitive

- Proceed
  - 1. Translation prob
  - 1. Alignment prob
  - 2. Translation prob
  - 2. Alignment prob
  - 3. Translation prob
  - Etc
- □ J&M, sec 25.6.1, example
- Intractable in practice

### Efficient

- Sidestep alignment probs:
  - 1. Translation prob
  - 2. Translation prob
  - 3. Translation prob

Etc

- K:SMT, sec 4.2.3, example
- How it gets implemented

## Training – the intuitive approach

- 1. Initalize the parameter values t(f/e) for pairs of words f and e.
  - With no info, initalize them uniformly:
     Each word f in the foreign language is an equally likely translation of the word e.
- 2. For each pair f, e of sentences in the corpus, use t to calculate the probabilities P(a | f, e) to all possible alignments a of the two sentences.
  - (Called the expectation step, apply model to data)

## Training – the intuitive approach

3. Collect fractional counts, tc(f/e):

(«How many times e is translated as f» )

- 1. First, calculate this, c(f/e; f, e) for each sentence f, e, where we count:
  - how many times e is aligned to f by each alignment,
  - weighed by the probability of the alignment.
- Then add over all sentences to get

$$tc(f | e) = \sum_{(\mathbf{f}, \mathbf{e})} c(f | e; \mathbf{f}, \mathbf{e})$$

# Training – the intuitive approach

24

4. Calculate the new translation probabilities

$$t(f|e) = \frac{tc(f|e)}{\sum_{f'} tc(f'|e)}$$
 Errors in formula  
4.14 in K:SMT

- where f'varies over all foreign words
- (Called the maximization step, estimate model from counts)
- 5. Repeat from 2 as long as you like

## Assign probabilities to alignments

□ Goal: compute  $P(\mathbf{a} | \mathbf{f}, \mathbf{e})$  $\Box$  Since  $P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = P(\mathbf{a} | \mathbf{f}, \mathbf{e})P(\mathbf{f} | \mathbf{e})$ we have

$$P(\mathbf{a} | \mathbf{f}, \mathbf{e}) = \frac{P(\mathbf{f}, \mathbf{a} | \mathbf{e})}{P(\mathbf{f} | \mathbf{e})}$$

□ We know

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \frac{\mathcal{E}}{(k+1)^m} \prod_{j=1}^m t(f_j | e_{a_j})$$

m

$$P(\mathbf{f} | \mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a} | \mathbf{e})$$

## Example – the intuitive way

### □ Corpus

e<sub>1</sub>: Dog barkedf<sub>1</sub>: Hund bjeffet

e<sub>2</sub>: Dog bit dogf<sub>2</sub>: Hund bet hund

3 English words: dog bit barked3 foreign words: hund bjeffet bet

# Step 1 initialization

| t(hund dog) = 1/3    | t(bet dog) = 1/3    | t(bjeffet dog) = 1/3    |
|----------------------|---------------------|-------------------------|
| t(hund bit) = 1/3    | t(bet bit) = 1/3    | t(bjeffet bit) = 1/3    |
| t(hund barked) = 1/3 | t(bet barked) = 1/3 | t(bjeffet barked) = 1/3 |
| t(hund 0) = 1/3      | t(bet 0) = 1/3      | t(bjeffet 0) = 1/3      |

### □ Uniform

Observe that we include the last line since an fword may be aligned to 0.

# Step 2: Alignment probabilities

e<sub>1</sub>: Dog barkedf<sub>1</sub>: Hund bjeffet

e<sub>2</sub>: Dog bit dogf<sub>2</sub>: Hund bet hund

- $\Box$  Sentence pair 1:
  - 9 possible alignments:
    - <0,0>, <0,1>, <0,2>, <1,0>, <1,1>, <1,2>,<2,0>,<2,1>, <2,2>
  - Each equally probable: 1/9
  - □ (call this a<sub>1</sub>: e.g. a<sub>1</sub>(<0,1>)=1/27)
- □ Sentence pair 2:
  - **6**4 possible alignments:
    - <0,0,0>,<0,0,1>,...
    - Each equally probable: 1/64
    - (call this a<sub>2</sub>.)
    - Or, the hard way (next slide)

## Step 2: The hard way

 $e_2$ : Dog bit dog  $f_2$ : Hund bet hund

### □ Sentence pair 2:

64 possible alignments:

■ <0,0,0>, <0,0,1>, ... <3,3,3>

Each translation probability: 1/27

$$P(\mathbf{f}_{2}, <1,2,0 > | \mathbf{e}_{2}) = \frac{\varepsilon}{(k+1)^{m}} \prod_{j=1}^{m} t(f_{j} | e_{a_{j}}) = \frac{\varepsilon}{(3+1)^{3}} \prod_{j=1}^{3} t(f_{j} | e_{a_{j}}) = \frac{\varepsilon}{4^{3}} t(f_{1} | e_{1}) \times t(f_{2} | e_{2}) \times t(f_{3} | e_{0}) = \frac{\varepsilon}{4^{3}} t(hund | dog) \times t(bet | bit) \times t(hund | 0) = \frac{\varepsilon}{4^{3}} \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} = \frac{\varepsilon}{4^{3} \times 3^{3}}$$

$$P(<1,2,0 > |\mathbf{f}_{2},\mathbf{e}_{2}) = \frac{P(\mathbf{f}_{2},<1,2,0 > |\mathbf{e}_{2})}{P(\mathbf{f}_{2} | \mathbf{e}_{2})} = \frac{P(\mathbf{f}_{2},<1,2,0 > |\mathbf{e}_{2})}{\sum_{\mathbf{a}} P(\mathbf{a},\mathbf{f}_{2} | \mathbf{e}_{2})} = \frac{\frac{\varepsilon}{64 * 27}}{64 * \frac{\varepsilon}{64 * 27}} = \frac{1}{64}$$

## Step 3.1: Collect fractional counts

- Calculate c(f/e; f, e) for each sentence f, e:
- $\Box \text{ Example: } f = \text{hund, } e = \text{dog,} f_{1}, e_{1}:$ 
  - There are 3 alignments that connect them:
    - <1,0>, <1,1>, <1,2>
  - **c**(hund | dog;  $\mathbf{f}_1, \mathbf{e}_1$ ) =

e<sub>1</sub>: Dog barked
f<sub>1</sub>: Hund bjeffet

 $a_1(<1,0>)+a_1(<1,1>)+a_1(<1,2>)=3*(1/9)=1/3$ 

| c(hund   dog; $f_1, e_1$ ) = 1/3    | c(bjeffet dog; $f_1, e_1$ ) = 1/3                      |
|-------------------------------------|--------------------------------------------------------|
| c(hund   barked; $f_1, e_1$ ) = 1/3 | c(bjeffet barked; $\mathbf{f}_1, \mathbf{e}_1$ ) = 1/3 |
| c(hund   0; $f_1, e_1$ ) = 1/3      | c(bjeffet   0; $f_1, e_1$ ) = 1/3                      |

## Step 3.1: Collect frac. counts ctd

 $f_2, e_2:$  $\Box f = bet, e = bit$ 

 $\mathbf{e}_2$ : Dog bit dog  $\mathbf{f}_2$ : Hund bet hund

■ 16 alignments connect them:  $\langle x, 2, z \rangle$  for x,z in {0,1,2,3} ■ c(bet | bit;  $f_2, e_2$ ) = 16/64 = 1/4

$$\Box f = bet, e = dog$$

all alignments <x,1,z> and <x,3,z> for x,z in {0,1,2,3}
c(bet | dog;  $f_2, e_2$ ) = 2\*16/64 = 1/2

| c(hund   dog; <b>f<sub>2</sub>, e<sub>2</sub></b> )= 1 | c(bet   dog; $f_2, e_2$ ) = 1/2                                  |
|--------------------------------------------------------|------------------------------------------------------------------|
| c(hund   bit; $f_2, e_2$ ) = 1/2                       | c(bet   bit; $f_2, e_2$ ) = 1/4                                  |
| c(hund   0; $f_2, e_2$ ) = 1/2                         | c(bet   0; <b>f</b> <sub>2</sub> , <b>e</b> <sub>2</sub> ) = 1/4 |

# Step 3.2: Total counts

$$tc(f | e) = \sum_{(\mathbf{f}, \mathbf{e})} c(f | e; \mathbf{f}, \mathbf{e})$$

| tc(hund dog) = 1+1/3                     | tc(bet dog) = 1/2           | tc(bjeffet dog) = 1/3    | tc(* dog)=4/3+1/2+1/3<br>=13/6 |
|------------------------------------------|-----------------------------|--------------------------|--------------------------------|
| $tc(hund bit) = \frac{1}{2}$             | $tc(bet bit) = \frac{1}{4}$ | tc(bjeffet bit) = 0      | tc(* bit)=3/4                  |
| tc(hund barked) = $1/3$                  | tc(bet barked) = 0          | tc(bjeffet barked) = 1/3 | tc(* barked) = 2/3             |
| $tc(hund 0) = \frac{1}{2} + \frac{1}{3}$ | tc(bet 0) = 1/4             | tc(bjeffet 0) = 1/3      | tc(* 0)=17/12                  |

## Step 4: new trans. probabilities

| $t(f _{a}) =$              | tc(f e)                         |
|----------------------------|---------------------------------|
| <i>(</i> ()   <i>e</i> ) = | $\overline{\sum_{f'} tc(f' e)}$ |

| e      | f       | t(f e)        | exact | decimal  |
|--------|---------|---------------|-------|----------|
| 0      | hund    | (5/6)/(17/12) | 10/17 | 0.588235 |
| 0      | bet     | (1/4)/(17/12) | 3/17  | 0.176471 |
| 0      | bjeffet | (1/3)/(17/12) | 4/17  | 0.235294 |
| dog    | hund    | (4/3)/(13/6)  | 8/13  | 0.615385 |
| dog    | bet     | (1/2)/(13/6)  | 3/13  | 0.230769 |
| dog    | bjeffet | (1/3)/(13/6)  | 2/13  | 0.153846 |
| bit    | hund    | (1/2)/(3/4)   | 2/3   | 0.666667 |
| bit    | bet     | (1/4)/(3/4)   | 1/3   | 0.333333 |
| barked | hund    | (1/3)/(2/3    | 1/2   | 0.5      |
| barked | bjeffet | (1/3)/(2/3)   | 1/2   | 0.5      |

## Repeat: Step 2, sentence 1

- □ 9 different alignments
- $\Box P'(\mathbf{a}) = c P(\mathbf{a}, \mathbf{f}_1 | \mathbf{e}_1)$
- $\Box P(\mathbf{a}) = P(\mathbf{a} | \mathbf{e}_1, \mathbf{f}_1)$

e<sub>1</sub>: Dog barkedf<sub>1</sub>: Hund bjeffet

|             |                                   |                 | Р'        | P=P'/1,4145436 |
|-------------|-----------------------------------|-----------------|-----------|----------------|
| P'(<0,0>) = | t(hund 0)*t(bjeffet 0)=           | (10/17)*(3/17)= | 0,103806  | 0,0733848      |
| P'(<0,1>)=  | t(hund 0)*t(bjeffet dog)=         | (10/17)*(2/13)= | 0,0904977 | 0,0639766      |
| P'(<0,2>)=  | t(hund 0)*t(bjeffet barked)=      | (10/17)*(1/2)=  | 0,294118  | 0,207924       |
| P'(<1,0>) = | t(hund dog)*t(bjeffet 0)=         | (8/13)*(3/17)=  | 0,108597  | 0,0767718      |
| P'(<1,1>) = | t(hund dog)*t(bjeffet dog)=       | (8/13)*(2/13)=  | 0,0946746 | 0,0669294      |
| P'(<1,2>) = | t(hund dog)*t(bjeffet barked)=    | (8/13)*(1/2)=   | 0,307692  | 0,217520       |
| P'(<2,0>) = | t(hund barked)*t(bjeffet 0)=      | (1/2)*(3/17)=   | 0,0882352 | 0,06237715     |
| P'(<2,1>)=  | t(hund barked)*t(bjeffet dog)=    | (1/2)*(2/13)=   | 0,0769231 | 0,05438015     |
| P'(<2,2>)=  | t(hund barked)*t(bjeffet barked)= | (1/2)*(1/2)=    | 0,25      | 0,176735       |
| Sum of P's  |                                   |                 | 1,4145436 |                |

# Repeat: Step 2, sentence 2

- □ 64 different alignments
- □ Home work til next week!
- How many alignments if the sentences are 10 words long?
- □ That's why we need a smarter way.
- $\Box$  To be continued ...