INF5820/INF9820
 LANGUAGE TECHNOLOGICAL APPLICATIONS

Jan Tore Lønning, Lecture 4, 10 Sep.
itl@ifi.uio.no

Today

\square Statistical machine translation:

- The noisy channel model

■ Word-based

- IBM model 1
\square Training

Noisy Channel Model

- Applying Bayes rule also called noisy channel model
- we observe a distorted message R (here: a foreign string f)
- we have a model on how the message is distorted (here: translation model)
- we have a model on what messages are probably (here: language model)
- we want to recover the original message S (here: an English string e)

SMT example

En	kokk	lagde	en	reth	med	bygg	
a 0.9	chef 0.6	made 0.3	a 0.9	right 0.19	with 0.4	building 0.45	
\ldots	cook 0.3	created 0.25	\ldots	straight 0.17	by 0.3	construction 0.33	
	\ldots	prepared 0.15		court 0.12	of 0.2	barley 0.11	
	constructed 0.12		dish 0.11	\ldots	\ldots		
		cooked 0.05		course 0.07			
		\ldots		\ldots			

```
Similarly for:
    - pos 0-2 (2x3)
    - pos 1-3
    - pos 2-4
    - pos 3-5 (4\times5)
    - pos 6-8
```

Pos4 - pos $6(1 \times 3 \times 3$ many $)$		Pos5 - pos $7(5 \times 3 \times 3$ many $)$	
a right with	2.7×10^{-12}	right with building	1.7×10^{-18}
a right of	1.5×10^{-10}	right with construction	5.4×10^{-18}
a right by	9.7×10^{-12}	right with barley	8.7×10^{-19}
\ldots		\ldots	
a course of	1.5×10^{-14}	course of barley	1.5×10^{-16}

Statistical Machine Translation - SMT INF5820

Jan Tore Lønning

Department of Informatics
Universitety of Oslo

Statistical learning

Goal

- Find the best (most probable) English translation \hat{E} of a foreign sentence F.
- $\hat{E}=\arg \max P(E \mid F)$
E

3 steps (common to many tasks)
(1) A model. We may not have seen F before. The model will determine what to look for.
(2) We must learn (or estimate) the parameters of the model from data.
(3) We must have a method for using the model to find the best E given F, decoding.

- Applying Bayes' formula

$$
\begin{aligned}
\hat{E} & =\underset{E}{\arg \max } P(E \mid F) \\
& =\underset{E}{\arg \max } \frac{P(F \mid E)}{P(F)} P(E) \\
& =\underset{E}{\arg \max } P(F \mid E) P(E)
\end{aligned}
$$

- Turning the picture: consider F as a translation (distortion) of E, and ask which E ?
- Why?
- Suitable for approximations.
- Makes use of language model $P(E)$.
- cf. K:SMT slide 34

Noisy channels

The noisy channel model

- See a distortion of the original.
- Goal: guess the original
- J\&M Fig. 5.23, 9.2 og 25.15

Example

- Speech recognition: Sounds a distortion of writing.
- Tagging: Word sequence distortion of tag sequence
- Translation: Source language a distortion of target language.

Separating the models

Starting point:

$\hat{E}=\underset{E}{\arg \max } P(F \mid E) P(E)$

The models

- We can build and train two separate models:
- The language model: $P(E)$
- The translation model: $P(F \mid E)$
- Decoding must use both models simultaneously

Language model

Goal

Estimate the probability $P(E)=P\left(e_{1} e_{2} \ldots e_{n}\right)$ of the string of words $e_{1} e_{2} \ldots e_{n}$

n-gram model

$$
\begin{aligned}
& P\left(e_{1} e_{2} \ldots e_{n}\right) \\
& \quad=P\left(e_{1}\right) P\left(e_{2} \mid e_{1}\right) P\left(e_{3} \mid e_{1}, e_{2}\right) \cdots P\left(e_{n} \mid e_{1} e_{2} \ldots e_{n-1}\right) \\
& \quad \approx P\left(e_{1}\right) P\left(e_{2} \mid e_{1}\right) P\left(e_{3} \mid e_{2}\right) \cdots P\left(e_{n} \mid e_{n-1}\right) \\
& \quad=P\left(e_{1}\right) \prod_{i=1}^{n-1} P\left(e_{i+1} \mid e_{i}\right)
\end{aligned}
$$

Comments:

- Uses the (incorrect) Markov-assumption
$P\left(e_{(j+1)} \mid e_{1} e_{2} \ldots e_{j}\right) \approx P\left(e_{j+1} \mid e_{j}\right)$
- Last slide shows the bigram model. Could alternatively use trigram, quadgram, ...
- Trigram: $P\left(e_{1} e_{2} \ldots e_{n}\right)=\prod_{i=1}^{n-1} P\left(e_{i+1} \mid e_{i-1}, e_{i}\right)$
- For all n-grams: special symbols for start and end:
- What is the probability of being the first word of a sentence?
- What is the probability of being the last word of a sentence?

The translation model

Several alternatives:

- Word based
- In particular the IBM-models: 1, 2, 3, 4, 5
- Phrase based
- Parameter estimation often done on top of a word-based model.
- Syntax based

Word-based models

- Suppose
- Source and target sentence always the same length
- Word-order is preserved.
- A one-to-one correspondence between words
- The translation would be like HMM-tagging

Translation	Tagging
source language word	word
target language word	tag
n-grams for targ. lang.	n-grams of tags
source sentence	sentence to be tagged
word translation probs.	probability for word given tag

- See simplified SMT example on slides from first MT lecture.

Word-based translation models

- But translation reorders, deletes, adds, goes many-to-one, one-to-many and many-to-many.
- We cannot apply HMM directly

Two parts to word-based translation

(1) What is the probability that source word a is translated as target word b ?
(2) Alignment: Which word(s) in the target language sentence is the translation of which word(s) in the source sentence?

- J\& M Figure 25.17, 25.20, 25.21, 25.22

Alignment

\square Length of English string: k (=7)

- Length of foreign string: $m(=9)$
\square An alignment is a vector of length m, each entry a number between 0 and k
\square The example:
$\square<a_{1}, a_{2}, \ldots, a_{9}>=<1,3,4,4,4,0,5,7,6>$

Alignment

\square Artificial restrictions:

- Several foreign words may be aligned with the same E word
- A foreign word cannot be aligned to more than one E word

IBM Model 1

\square Consider all possible alignments a:

$$
P(\mathbf{f} \mid \mathbf{e})=\sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})
$$

\square For each alignment use the generative model:

$$
P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=P(m \mid \mathbf{e}) \prod_{j=1}^{m} P\left(a_{j} \mid a_{1}^{j-1}, f_{1}^{j-1}, m, \mathbf{e}\right) P\left(f_{j} \mid a_{1}^{j}, f_{1}^{j-1}, m, \mathbf{e}\right)
$$

\square Simplify the model - make assumptions

Figure 25.23

$$
P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=P(m \mid \mathbf{e}) \prod_{j=1}^{m} P\left(a_{j} \mid a_{1}^{j-1}, f_{1}^{j-1}, m, \mathbf{e}\right) P\left(f_{j} \mid a_{1}^{j}, f_{1}^{j-1}, m, \mathbf{e}\right)
$$

\square The generative model:

- Choose the length of the foreign string $\quad P(m \mid \mathbf{e})$
- Which E word translates to the first F word $\quad P\left(a_{1} \mid m, \mathbf{e}\right)$
- What is the translation of this word?

$$
P\left(f_{1} \mid a_{1}, m, \mathbf{e}\right)
$$

- Which E word translates to the j -th F word given the choices so far $\quad P\left(a_{j} \mid a_{1}^{j-1}, f_{1}^{j-1}, m, \mathbf{e}\right)$
- What is the translation of this word given the choices so far

$$
P\left(f_{j} \mid a_{1}^{j}, f_{1}^{j-1}, m, \mathbf{e}\right)
$$

Assumptions, approximations

$P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=P(m \mid \mathbf{e}) \prod_{j=1}^{m} P\left(a_{j} \mid a_{1}^{j-1}, f_{1}^{j-1}, m, \mathbf{e}\right) P\left(f_{j} \mid a_{1}^{j}, f_{1}^{j-1}, m, \mathbf{e}\right)$

- $P(m \mid \mathbf{e})$ is a constant, independent of m and E

ם $P\left(a_{j} \mid a_{1}^{j-1}, f_{1}^{j-1}, m, \mathbf{e}\right)=(k+1)^{-1}$
\square all alignments the same probability (adds to 1)

- $P\left(f_{j} \mid a_{1}^{j}, f_{1}^{j-1}, m, \mathbf{e}\right)=t\left(f_{j} \mid e_{a_{j}}\right)$
- the word translation probability only depends on source word

IBM model 1

$$
P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=P(m \mid \mathbf{e}) \prod_{j=1}^{m} P\left(a_{j} \mid a_{1}^{j-1}, f_{1}^{j-1}, m, \mathbf{e}\right) P\left(f_{j} \mid a_{1}^{j}, f_{1}^{j-1}, m, \mathbf{e}\right)
$$

\square Simplifies to

$$
\begin{aligned}
& P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\varepsilon \prod_{j=1}^{m}(k+1)^{-1} t\left(f_{j} \mid e_{a_{j}}\right) \\
& P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\frac{\varepsilon}{(k+1)^{m}} \prod_{j=1}^{m} t\left(f_{j} \mid e_{a_{j}}\right)
\end{aligned}
$$

$\square \varepsilon$ is a normalisation factor

- Formula 4.7 in the SMT book
$■$ (The book goes $f \rightarrow$ e, note $\rightarrow f$)

Parameter estimation

\square If the training corpus was aligned, the model could be learned by counting:

$$
t\left(f_{j} \mid e_{a_{j}}\right)=\frac{C\left(f_{j}, e_{a_{j}}\right)}{\sum_{f} C\left(f, e_{a_{j}}\right)}
$$

- If we had known the translation probabilities, we could have found the most probable alignment.
\square We neither know word probabilities nor alignment: Chicken and egg problem
\square EM-algorithm: we may learn the two simultaneously

Training - the idea

1. From the translation probabilities, we may estimate alignment probabilities

- (We do not choose only the best alignment)

2. From alignment probabilities, we may recalculate translation probabilitiesBy alternating between (1) and (2), the numbers converge towards better results
\square For IBM Model 1 it may be proved that they converge towards a global optimum

EM Algorithm

- Incomplete data
- if we had complete data, would could estimate model
- if we had model, we could fill in the gaps in the data
- Expectation Maximization (EM) in a nutshell

1. initialize model parameters (e.g. uniform)
2. assign probabilities to the missing data
3. estimate model parameters from completed data
4. iterate steps $2-3$ until convergence

EM Algorithm

... la maison ... la maison blue .. la fleur ...

... the house ... the blue house ... the flower ...

- Initial step: all alignments equally likely
- Model learns that, e.g., la is often aligned with the

EM Algorithm

.. la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

- After one iteration
- Alignments, e.g., between la and the are more likely

EM Algorithm

.. la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

- After another iteration
- It becomes apparent that alignments, e.g., between fleur and flower are mor likely (pigeon hole principle)

EM Algorithm

.. la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

- Convergence
- Inherent hidden structure revealed by EM

EM Algorithm

.. la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

$$
\begin{gathered}
\text { p(la } \mid \text { the })=0.453 \\
\mathrm{p}(\text { le } \mid \text { the })=0.334 \\
\mathrm{p}(\mathrm{maison} \mid \text { house })=0.876 \\
\mathrm{p}(\mathrm{bleu} \mid \text { blue })=0.563
\end{gathered}
$$

- Parameter estimation from the aligned corpus

Two ways to describe the algorithm

Intuitive

\square Proceed

- 1. Translation prob
- 1. Alignment prob
- 2. Translation prob
- 2. Alignment prob
- 3. Translation prob
- Etc
$\square J \& M$, sec 25.6.1, example
- Intractable in practice

Efficient

\square Sidestep alignment probs:

- 1. Translation prob
- 2. Translation prob
- 3. Translation prob
\square Etc
\square K:SMT, sec 4.2.3, example
\square How it gets implemented

Training - the intuitive approach

1. Initalize the parameter values $t(f \mid e)$ for pairs of words f and e.

- With no info, initalize them uniformly:

Each word f in the foreign language is an equally
likely translation of the word e.
2. For each pair \boldsymbol{f}, \boldsymbol{e} of sentences in the corpus, use t to calculate the probabilities $P(\boldsymbol{a} \mid \boldsymbol{f}, \boldsymbol{e})$ to all possible alignments \boldsymbol{a} of the two sentences.

- (Called the expectation step, apply model to data)

Training - the intuitive approach

3. Collect fractional counts, $t c(f \mid e)$: («How many times e is translated as f »)
4. First, calculate this, $c(f \mid e ; \boldsymbol{f}, \boldsymbol{e})$ for each sentence $\boldsymbol{f}, \boldsymbol{e}$, where we count:

- how many times e is aligned to f by each alignment,
- weighed by the probability of the alignment.

2. Then add over all sentences to get

$$
t c(f \mid e)=\sum_{(\mathbf{f}, \mathbf{e})} c(f \mid e ; \mathbf{f}, \mathbf{e})
$$

Training - the intuitive approach

4. Calculate the new translation probabilities

$$
t(f \mid e)=\frac{t c(f \mid e)}{\sum_{f^{\prime}} t c\left(f^{\prime} \mid e\right)}
$$

Errors in formula 4.14 in K:SMT

- where f 'varies over all foreign words
- (Called the maximization step, estimate model from counts)

5. Repeat from 2 as long as you like

Assign probabilities to alignments

\square Goal: compute $\quad P(\mathbf{a} \mid \mathbf{f}, \mathbf{e})$
\square Since

- we have

$$
P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=P(\mathbf{a} \mid \mathbf{f}, \mathbf{e}) P(\mathbf{f} \mid \mathbf{e})
$$

$$
P(\mathbf{a} \mid \mathbf{f}, \mathbf{e})=\frac{P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})}{P(\mathbf{f} \mid \mathbf{e})}
$$

\square We know

$$
\begin{aligned}
& P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\frac{\varepsilon}{(k+1)^{m}} \prod_{j=1}^{m} t\left(f_{j} \mid e_{a_{j}}\right) \\
& P(\mathbf{f} \mid \mathbf{e})=\sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})
\end{aligned}
$$

Example - the intuitive way

\square Corpus

```
\(\mathbf{e}_{1}\) : Dog barked
\(f_{1}\) : Hund bjeffet
```


3 English words: dog bit barked 3 foreign words: hund bjeffet bet
\mathbf{f}_{2} : Hund bet hund

Step 1 initialization

$t($ hund \mid dog $)=1 / 3$	$t($ bet \mid dog $)=1 / 3$	$t($ bjeffet \mid dog $)=1 / 3$
$t($ hund \mid bit $)=1 / 3$	$t($ bet \mid bit $)=1 / 3$	$t($ bjeffet \mid bit $)=1 / 3$
$t($ hund\|barked $)=1 / 3$	$t($ bet \mid barked $)=1 / 3$	$t($ bjeffet \mid barked $)=1 / 3$
$t($ hund $\mid 0)=1 / 3$	$\mathrm{t}($ bet $\mid 0)=1 / 3$	$\mathrm{t}($ bjeffet $\mid 0)=1 / 3$

\square Uniform
\square Observe that we include the last line since an f word may be aligned to 0 .

Step 2: Alignment probabilities

```
e}\mp@subsup{\mathbf{1}}{1}{}\mathrm{ : Dog barked
f
```

```
e}\mp@subsup{\mathbf{2}}{2}{}\mathrm{ : Dog bit dog
f
```

\square Sentence pair 1:

- 9 possible alignments:

$$
\begin{aligned}
& \square<0,0>,<0,1>,<0,2>,<1,0>,<1,1>, \\
& <1,2>,<2,0>,<2,1>,<2,2>
\end{aligned}
$$

- Each equally probable: 1/9
- (call this a_{1} : e.g. $\left.a_{1}(<0,1>)=1 / 27\right)$
\square Sentence pair 2:
- 64 possible alignments:
$\square<0,0,0\rangle,<0,0,1\rangle, \ldots<3,3,3>$
- Each equally probable: 1/64
- (call this a_{2}.)
- Or, the hard way (next slide)

Step 2: The hard way

\square Sentence pair 2:

\mathbf{e}_{2} : Dog bit dog
f_{2} : Hund bet hund

- 64 possible alignments:
- <0,0,0>, <0,0,1>, .. <3,3,3>
\square Each translation probability: 1/27

$$
\begin{aligned}
& P\left(\mathbf{f}_{2},<1,2,0>\mid \mathbf{e}_{2}\right)=\frac{\varepsilon}{(k+1)^{m}} \prod_{j=1}^{m} t\left(f_{j} \mid e_{a_{j}}\right)=\frac{\varepsilon}{(3+1)^{3}} \prod_{j=1}^{3} t\left(f_{j} \mid e_{a_{j}}\right)=\frac{\varepsilon}{4^{3}} t\left(f_{1} \mid e_{1}\right) \times t\left(f_{2} \mid e_{2}\right) \times t\left(f_{3} \mid e_{0}\right)= \\
& \frac{\varepsilon}{4^{3}} t(\text { hund } \mid \text { dog }) \times t(\text { bet } \mid \text { bit }) \times t(\text { hund } \mid 0)=\frac{\varepsilon}{4^{3}} \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}=\frac{\varepsilon}{4^{3} \times 3^{3}}
\end{aligned}
$$

$$
P\left(<1,2,0>\mid \mathbf{f}_{2}, \mathbf{e}_{2}\right)=\frac{P\left(\mathbf{f}_{2},<1,2,0>\mid \mathbf{e}_{2}\right)}{P\left(\mathbf{f}_{2} \mid \mathbf{e}_{2}\right)}=\frac{P\left(\mathbf{f}_{2},<1,2,0>\mid \mathbf{e}_{2}\right)}{\sum_{\mathbf{a}} P\left(\mathbf{a}, \mathbf{f}_{2} \mid \mathbf{e}_{2}\right)}=\frac{\frac{\varepsilon}{64 * 27}}{64 * \frac{\varepsilon}{64 * 27}}=\frac{1}{64}
$$

Step 3.1: Collect fractional counts

Calculate $c(f \mid e ; \boldsymbol{f}, \boldsymbol{e})$ for each sentence $\boldsymbol{f}, \boldsymbol{e}$:
\square Example: $f=$ hund, $e=\operatorname{dog}_{1} \boldsymbol{f}_{1}, \boldsymbol{e}_{1}$:

- There are 3 alignments that connect them:

$$
\langle 1,0\rangle,\langle 1,1\rangle,<1,2\rangle
$$

$\square \mathrm{c}\left(\right.$ hund $\left.\mid \operatorname{dog}_{;} \mathbf{f}_{1}, \mathbf{e}_{1}\right)=$
$\mathbf{e}_{1}:$ Dog barked
$\mathbf{f}_{1}:$ Hund bjeffet

$$
a_{1}(<1,0>)+a_{1}(<1,1>)+a_{1}(<1,2>)=3^{*}(1 / 9)=1 / 3
$$

$c\left(\right.$ hund \mid dog $\left.; \mathbf{f}_{1}, \mathbf{e}_{1}\right)=1 / 3$	$c\left(\right.$ bjeffet \mid dog; $\left.\mathbf{f}_{1}, \mathbf{e}_{1}\right)=1 / 3$
$c\left(\right.$ hund \mid barked; $\left.\mathbf{f}_{1}, \mathbf{e}_{1}\right)=1 / 3$	$c\left(\right.$ bjeffet \mid barked $\left.; \mathbf{f}_{1}, \mathbf{e}_{1}\right)=1 / 3$
$c\left(\right.$ hund $\left.\mid 0 ; \mathbf{f}_{1}, \mathbf{e}_{1}\right)=1 / 3$	$c\left(\right.$ bjeffet $\left.\mid 0 ; \mathbf{f}_{1}, \mathbf{e}_{1}\right)=1 / 3$

Step 3.1: Collect frac. counts ctd

f_{2}, e_{2} :
$\square f=$ bet, $e=$ bit

e_{2} : Dog bit dog
 f_{2} : Hund bet hund

- 16 alignments connect them: $\langle x, 2, z>$ for x, z in $\{0,1,2,3\}$
- c(bet \mid bit $\left.; f_{2}, e_{2}\right)=16 / 64=1 / 4$
$\square f=\mathrm{bet}, e=\operatorname{dog}$
- all alignments $\langle x, 1, z>$ and $<x, 3, z>$ for x, z in $\{0,1,2,3\}$
- c(bet \mid dog; $\left.f_{2}, e_{2}\right)=2 * 16 / 64=1 / 2$

$c\left(\right.$ hund \mid dog $\left.; \mathbf{f}_{2}, \mathbf{e}_{2}\right)=1$	$c\left(\right.$ bet \mid dog; $\left.f_{2}, \mathbf{e}_{2}\right)=1 / 2$
$c\left(\right.$ hund \mid bit; $\left.\mathbf{f}_{2}, \mathbf{e}_{2}\right)=1 / 2$	$c\left(\right.$ bet \mid bit; $\left.\mathbf{f}_{2}, \mathbf{e}_{2}\right)=1 / 4$
$c\left(\right.$ hund $\left.\mid 0 ; \mathbf{f}_{2}, \mathbf{e}_{2}\right)=1 / 2$	$c\left(\right.$ bet $\left.\mid 0 ; \mathbf{f}_{2}, \mathbf{e}_{2}\right)=1 / 4$

Step 3.2: Total counts

$$
t c(f \mid e)=\sum_{(\mathbf{f}, \mathbf{e})} c(f \mid e ; \mathbf{f}, \mathbf{e})
$$

$\operatorname{tc}($ hund $\mid \operatorname{dog})=1+1 / 3$	$\operatorname{tc}($ bet \mid dog $)=1 / 2$	$\operatorname{tc}($ bjeffet $\mid \operatorname{dog})=1 / 3$	$\begin{aligned} & \operatorname{tc}(* \mid \operatorname{dog})=4 / 3+1 / 2+1 / 3 \\ & =13 / 6 \end{aligned}$
$\operatorname{tc}\left(\right.$ hund ${ }^{\text {bit }}$) $=1 / 2$	$\operatorname{tc}($ bet \mid bit $)=1 / 4$	tc $($ bjeffet \mid bit $)=0$	tc $(* \mid b i t)=3 / 4$
$\operatorname{tc}($ hund \mid barked $)=1 / 3$	$\operatorname{tc}($ bet \mid barked $)=0$	$t c($ bjeffet \mid barked $)=1 / 3$	$\operatorname{tc}(* \mid$ barked $)=2 / 3$
$\operatorname{tc}($ hund $\mid 0)=1 / 2+1 / 3$	$\operatorname{tc}(\operatorname{bet} \mid 0)=1 / 4$	$\operatorname{tc}(\operatorname{bjeffet} \mid 0)=1 / 3$	$\operatorname{tc}(* \mid 0)=17 / 12$

Step 4: new trans. probabilities

$$
t(f \mid e)=\frac{t c(f \mid e)}{\sum_{f,} t c\left(f^{\prime} \mid e\right)}
$$

e	f	$\mathrm{t}(\mathrm{f} \mid \mathrm{e})$	exact	decimal
0	hund	$(5 / 6) /(17 / 12)$	$10 / 17$	0.588235
0	bet	$(1 / 4) /(17 / 12)$	$3 / 17$	0.176471
0	bjeffet	$(1 / 3) /(17 / 12)$	$4 / 17$	0.235294
dog	hund	$(4 / 3) /(13 / 6)$	$8 / 13$	0.615385
dog	bet	$(1 / 2) /(13 / 6)$	$3 / 13$	0.230769
dog	bjeffet	$(1 / 3) /(13 / 6)$	$2 / 13$	0.153846
bit	hund	$(1 / 2) /(3 / 4)$	$2 / 3$	0.666667
bit	bet	$(1 / 4) /(3 / 4)$	$1 / 3$	0.333333
barked	hund	$(1 / 3) /(2 / 3$	$1 / 2$	0.5
barked	bjeffet	$(1 / 3) /(2 / 3)$	$1 / 2$	0.5

Repeat: Step 2, sentence 1

- 9 different alignments
$\square P^{\prime}(\mathbf{a})=c P\left(\mathbf{a}, \mathbf{f}_{\mathbf{1}} \mid \mathbf{e}_{\mathbf{1}}\right)$
$\square P(\mathbf{a})=P\left(\mathbf{a} \mid \mathbf{e}_{1}, \mathbf{f}_{1}\right)$

\mathbf{e}_{1} : Dog barked \mathbf{f}_{1} : Hund bjeffet

			P'	$\mathrm{P}=\mathrm{P} / / 1,4145436$	
$\mathrm{P}^{\prime}(<0,0>)=$	t (hund\|0)*t(bjeffet $\mid 0)=$	$(10 / 17) *(3 / 17)=$	0,103806	0,0733848	
$\mathrm{P}^{\prime}(<0,1>)=$	t(hund\|0)*t(bjeffet	dog)=	$(10 / 17) *(2 / 13)=$	0,0904977	0,0639766
$\mathrm{P}^{\prime}(<0,2>)=$	t (hund\|0)*t(bjeffet	barked) $=$	$(10 / 17) *(1 / 2)=$	0,294118	0,207924
$\mathrm{P}^{\prime}(<1,0>)=$	t (hund\|dog)*t(bjeffet	0)=	$(8 / 13) *(3 / 17)=$	0,108597	0,0767718
$\mathrm{P}^{\prime}(<1,1>)=$	t (hund\|dog)*t(bjeffet	dog)=	$(8 / 13) *(2 / 13)=$	0,0946746	0,0669294
$\mathrm{P}^{\prime}(<1,2>)=$	t (hund\|dog)*t(bjeffet	barked)=	(8/13)*(1/2)=	0,307692	0,217520
$\mathrm{P}^{\prime}(<2,0>)=$	t(hund\|barked)*t(bjeffet $\mid 0)=$	$(1 / 2) *(3 / 17)=$	0,0882352	0,06237715	
$\mathrm{P}^{\prime}(<2,1>)=$	t(hund\|barked)*t(bjeffet	dog)=	$(1 / 2) *(2 / 13)=$	0,0769231	0,05438015
$\mathrm{P}^{\prime}(<2,2>)=$	t(hund\|barked)*t(bjeffet	barked)=	$(1 / 2) *(1 / 2)=$	0,25	0,176735
Sum of P's			1,4145436		

Repeat: Step 2, sentence 2

- 64 different alignments
- Home work til next week!
\square How many alignments if the sentences are 10 words long?
\square That's why we need a smarter way.
\square To be continued ...

