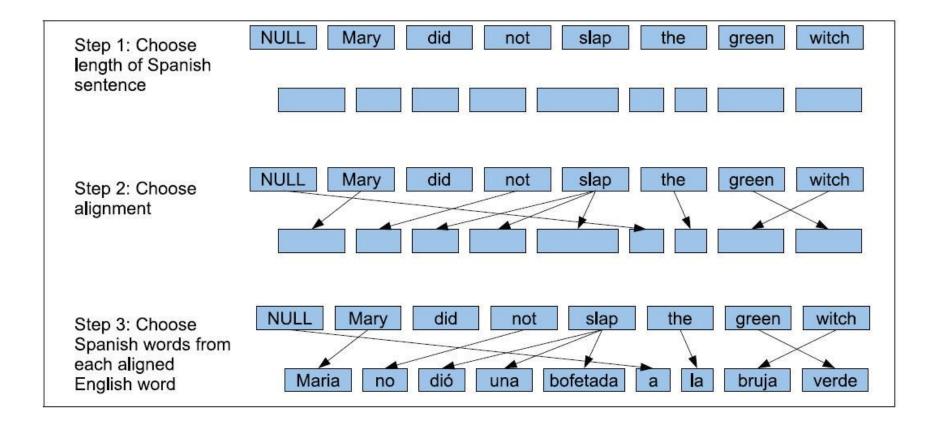
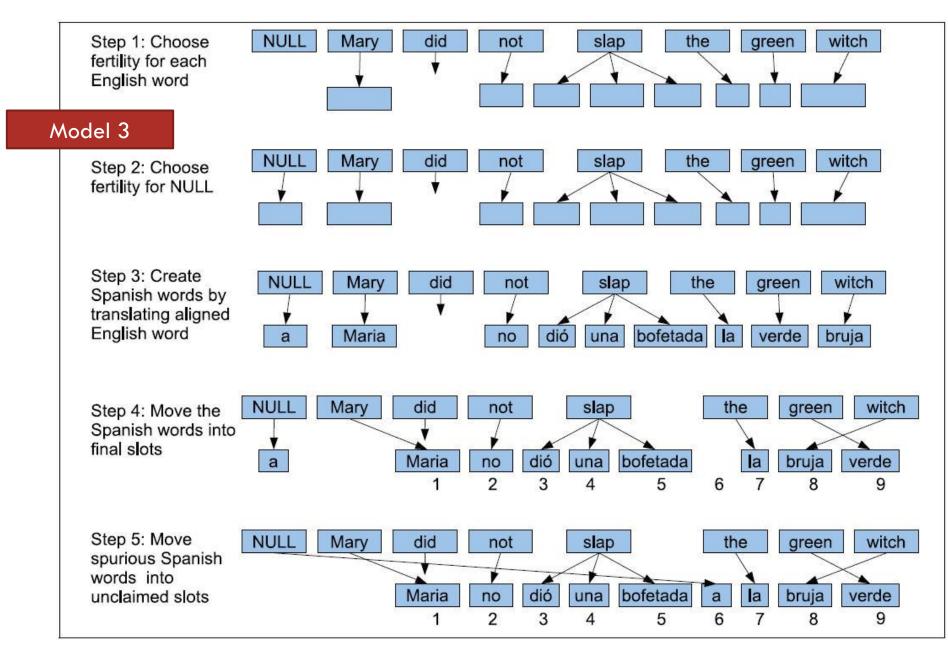
INF5820/INF9820

LANGUAGE TECHNOLOGICAL APPLICATIONS


1


Jan Tore Lønning, Lecture 6, 26 Sep. 2014 jtl@ifi.uio.no

- □ Higher IBM-models: 3, 4, 5
- Phrase-Based Models

Model 1 & 2 and HMM alignment

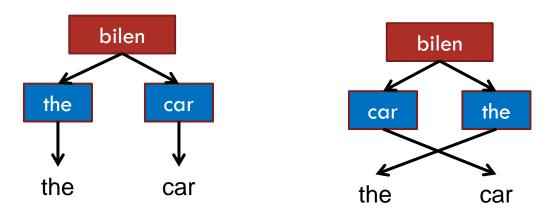
IBM Model 3: Fertility

Fertility: number of F words produced by an E word
 Modelled by a distribution n(x|e)

Example: F = Norw. n(2 | yesterday) \approx 1 n(1 | to) \approx 0.8 n(2 | to) \approx 0.2 n(1 | car) \approx 1 n(0 | the) \approx 0.6 n(1 | the) \approx 0.4

Example: Norw. \rightarrow Eng. n(2 | bilen) ≈ 0.7 n(1 | bilen) ≈ 0.3 n(1 | å) ≈ 0.8 n(0 | å) ≈ 0.2

IBM Model 3: Null insertion


Modelled by:

- □ There is a probability p0:
 - After each inserted word there is the probability p0 of not inserting a null-word
 - And a probability p1 = (1-p0) of inserting a null-word
- A rather complex expression for what this contributes into P(a, f | e) which considers
 - Permutations
 - Length of f

IBM Model 3: Distortion

$d(j | a_j, m, k)$

- □ A probability distribution which gives the probability of word a_i ending up in position *j*.
- □ Similar to alignment in model 2 but:
 - Opposite direction
 - Different choices of words + distortion may correpsond to the same alignment

IBM model 3

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \prod_{j=1}^{m} t(f_j | e_{a_j}) \prod_{j=1}^{m} d(j | a_j, k, m) \times \text{ more}$$

- Where more is an expression which counts
 n(x | e_i) the right number of times
 - And uses p0 to give the right probability to nullinsertion.

Training Model 3

- □ In principle like Model 1, but
 - The trick to get rid of the alignments does not work
 Too costly to calculate all alignments
- Strategy
 - Sample and use the most probable alignments
 - Start with alignments for Model 1 and Model 2
 - Use hill-climbing algorithm

Hill-climbing algorithm

- 10
- □ Assign some initial parameter values
- Consider several alternative sets of parameter values in the vicinity of where you are
- Compare the resulting values and choose the parameters which yield the best results
- Repeat

Training model 3

- □ Model 1: The optimum we find is global
- □ Model 3 (and model 2):
 - A local optimum does not have to be global
- First run some iterations of Model1 and maybe some iterations of Model 2
- Use the results, in particular the alignment, as input to Model 3
- Hill-climb the space of alignments from here, doing minimal changes.

IBM Model 4

- Better reordering model
- □ Consider group of words (phrases)
- □ Distinguish between
 - the placement of the whole group
 - The placement within the group

The IBM-models

- □ IBM models 1-4 are not true probability models.
- □ Model 5 fixes this
 - Based of model 4
- $\hfill\square$ We will not consider models 4 and 5
- Phrase Based translation makes use of Model 3

- □ Higher IBM-models: 3, 4, 5
- Phrase-Based Models

Phrase alignment

- □ K. Slides to chapter 4:
 - **49-5**1
 - **53-54**

Phrase-Based Models

□ K. Slides to chapter 5

