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The generative SMT-model

3 !
0 Adding weights:
O Koehn, lecture 5, Slide 17-21



How to tune weights?
N

1. Make an original system, SO, using a parallel corpus, C1,
for the phrase table.

2. Use a distinct small parallel corpus, C2. (dev set)

3.  Produce several translations for each f-sentence in C2.
O n-best list (h=100, 1000, 10000)

4. Use a method for scoring the candidate translations in C2.
O (typically modified BLEU-score).

5. Try to adjust the weights to bring the best candidates in (4)
towards top of list.

6. Make new system with adjusted weights.

7. Repeat from 3 towards convergence.



Learning task

e Task: find weights, so that feature vector of the correct translations ranked
first

LM ™ W IXE
1 Mary =ot give slep witch gree=n . -17.2 -%.2 -T i
2 Mary ot alep the witch gruen . -16.31 -%.7 -T i
1 Mary mot give slep of the green mitch . -18.1 -4.% -§ 1
4 Mary mot give of goeen witch . -1E.5% -5%.1 -8 1
5 Mary did not slap bhe witch gresn . -20.1 -4.7 -® 1
& Mary did nok alep green witch . -15.% -3.2 -T i
7 Mary mot mlep of the witch gresn . -19.2 -%.31 -8 1
@ Mary did not give salap of wlich gresn . -23.2 -5.0 -8 1
7 Mary did nok give slap of the gresn witch | -21.8 -4.4 -10 1
10 Mary did slazn the witch green . -1%5.% -§.9 -7 1
| 11 Mary did not elep bhs grsan witch . -17.4 -5.3 -E [ ] |
13 Mary did mlep wibtch gresn . -16.F -&.F & 1
11 Mary did mlep the green witch . -14.3 -7.1 -T 1
14 Mary did not slep the of green witch . -24.2 -%.31 -§ 1
1% Mary did nobk give slep the witch gresa . -25.2 -5.% -8 1
cunk trmoslatio= Esnbu-s veckoTr
K.oehn, U Edinburgh ESSLLI Summer Schoal Day &



Discriminative training
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How to? (sec. 9.3)
B

5. Try to adjust the weights to bring the best

candidates in (4) towards top of list.

0 No analytic solution
O We can’t differentiate a function and find zero values

0 Take 1: try systematically, say
mA,=.1,.2,3..,.9
mA=T,.2,..,.9- M
A=
O Too many values to try out
O Small changes in As, large effect on result:
m The steps are too large



Take 2: Powell search

s !
0 Optimize one A, say A ,, keeping the other fixed.
0 With this value for A ,,, optimize the next A, etc.

0 A method for searching for the best value for each

A



Take 3:

0 (alternative) Simplex algorithm

0 Variants of “hill climbing”

0 Read sec 9.3

O Not the details of
m Finding threshold points
m Combining threshold points

in sec 9.3.2
O Not 9.3.3 Simplex



Will the solutions be global?
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http://upload.wikimedia.org/wikipedia/en/7/7e/Local_maximum.png
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Reranking model for SMT

Testing 0 Sec. 9.2
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Statistical models
B

Generative model Discriminative model

0 Construct solutions and

: s O Starts with a set of
assign them probabilities

solutions
0 Examples

o PCFG: 0 Select between them

m Assign trees

m Probabilities to the trees on The quIS Of d

0o HMM-tagger statistical score
O The translation models, .

both IBM and phrase- - Example.

based

O Malt parser



Reranking model for SMT
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0 Discriminative model

0 Take as input an n-best
list from a translation
system




Reranking vs Tuning
N

0 What is the difference between
O Tuning and
O Reranking?



Supervised learning

S
0 Consider it as a classification problem

0 Choose learning goal:
O Typically modified BLEU (or NIST) score

0 Choose features

0 Alternative learning strategies:
O Naive Bayes

O Maximum entropy
= (INF5830)
m Skip here 9.2.4

o Etc.



A glimpse beyond
S
0 Large-Scale (sec. 9.4 not to read)

0 Millions of parameters

O e.g. weight on each phrase probability
m\_345698 * P(the house | das haus)
m\_345699 * P(the building| das haus)

0 Need large dev corpus for tuning
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The LOGON project

o4 .
0 MT: Norwegian =2 English
0 Tourist texts — hiking descriptions
0 High quality (precision) — limited recall
o 2003-2007

O Strategy
O Mainly rule-based:

m Semantic transfer

O Statistical reranking



Alternative strategies
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Back bone: Semantic transfer

2.Semantic
transfer

Semantic repr.
English

1.LFG-based
analysis

Norwegian
sentence

3.HPSG-based
generation

English
sentence




Minimal Recursion Semantics

e
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Analysis
S

0 Grammar: NorGram,
O A multipurpose computational grammar based on LFG

O Developed at UiB since 1998
o LOGON has

®m greatly extended grammatical coverage
B equipped it with an MRS semantics module
® enhanced efficiency
0 Processing
O The XLE system from PARC

O Morphological processing developed at UiB on top of earlier projects
(tagging, UiB & UiO & NTNU)

O Compositional analysis of compounds



Generation
2 1

0o Grammar
O The English Resource Grammar (ERG)
O A multipurpose computational grammar based on HPSG

O Continuously developed since 1994 (CSLI Stanford)
O Refined, domain-adapted, and extended by LOGON

O Open source, used in other ongoing projects

0 Processing
O Adapted technology from DELPH-IN consortium
O LOGON: forty times faster generation algorithms



Transfer
3

0 Grammar

O Hand-coded transfer rules (7000 rules)

O Semi-automatic acquisition of transfer correspondences
m for open class words

m from a dictionary (Kunnskapsforlagets store No-En)
® (ca 10 000)
0 Processing
O Typed unification-based formalism for rewriting of MRSs
O Design and implementation from scratch

O Non-deterministic rewriting of MRS-fragments
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