INF5820/INF9820

LANGUAGE TECHNOLOGICAL APPLICATIONS

1

Jan Tore Lønning, Lecture 8, 10 Oct. 2014 jtl@ifi.uio.no

Today

- Parameter tuning
- Reranking
- Hybrid translation
 - Rule-based backbone
 - Reranking
- A glimpse beyond

The generative SMT-model

- □ Adding weights:
 - Koehn, lecture 5, Slide 17-21

How to tune weights?

- 1. Make an original system, SO, using a parallel corpus, C1, for the phrase table.
- 2. Use a distinct small parallel corpus, C2. (dev set)
- 3. Produce several translations for each f-sentence in C2.
 - n-best list (n=100, 1000, 10000)
- 4. Use a method for scoring the candidate translations in C2.
 - (typically modified BLEU-score).
- 5. Try to adjust the weights to bring the best candidates in (4) towards top of list.
- 6. Make new system with adjusted weights.
- 7. Repeat from 3 towards convergence.

Learning task

 Task: find weights, so that feature vector of the correct translations ranked first

	TRANSLATION	LM	TN	MD.	SER	
1	Mary not give slap witch green .	-17.2	-5.2	-7	1	
2	Mary not slap the witch green .	-16.3	-5.7	-7	1	
3	Mary not give slap of the green witch .	-18.1	-42	-9	1	
4	Mary not give of green witch .	-16.5	-5.1	-8	1	
5	Mary did not slap the witch green .	-20.1	-47	-8	1	
6	Mary did not slap green witch .	-15.5	-3.2	-7	1	
7	Mary not slap of the witch green .	-19.2	-5.3	-8	1	
	Mary did not give slap of witch green .	-23.2	-5.0	-9	1	
9	Mary did not give slap of the green witch .	-21.8	-4.4	-10	1	
10	Mary did slap the witch green .	-15.5	-69	-7	1	
11	Mary did not slap the green witch .	-17.4	-5.3	-8		
12	Mary did slap witch green .	-16.9	-6.9	-6	1	
13	Mary did slap the green witch .	-14.3	-7.1	-7	1	
14	Mary did not slap the of green witch .	-24.2	-5.3	-9	1	
15	Mary did not give slap the witch green .	-25.2	-5.5	-9	1	
rank	translation	featu	ce vec	tor		

Koehn, U Edinburgh

How to? (sec. 9.3)

7

5. Try to adjust the weights to bring the best candidates in (4) towards top of list.

- □ No analytic solution
 - We can't differentiate a function and find zero values
- □ Take 1: try systematically, say
 - λ_{LM}= .1, .2, .3, ..., .9
 - λ_φ= .1, .2, ..., .9- λ_LM
 - λ_D = ...
 - Too many values to try out
 - Small changes in λs, large effect on result:
 - The steps are too large

Take 2: Powell search

- \square With this value for λ_{LM} , optimize the next λ , etc.
- \square A method for searching for the best value for each λ

Take 3:

- alternative) Simplex algorithm
- Variants of "hill climbing"

- □ Read sec 9.3
 - Not the details of
 - Finding threshold points
 - Combining threshold points
 - in sec 9.3.2
 - Not 9.3.3 Simplex

Will the solutions be global?

Today

- Parameter tuning
- Reranking
- Hybrid translation
 - Rule-based backbone
 - Reranking
- A glimpse beyond

Reranking model for SMT

□ Sec. 9.2

Statistical models

Generative model

- Construct solutions and assign them probabilities
- Examples
 - PCFG:
 - Assign trees
 - Probabilities to the trees
 - HMM-tagger
 - The translation models, both IBM and phrasebased

Discriminative model

- Starts with a set of solutions
- Select between them on the basis of a statistical score
- □ Example:
 - Malt parser

Reranking model for SMT

 Discriminative model
Take as input an n-best list from a translation system

Reranking vs Tuning

- What is the difference between
 - Tuning and
 - Reranking?

Supervised learning

- Consider it as a classification problem
- □ Choose learning goal:
 - Typically modified BLEU (or NIST) score
- Choose features
- □ Alternative learning strategies:
 - Naïve Bayes
 - Maximum entropy
 - (INF5830)
 - Skip here 9.2.4
 - Etc.

A glimpse beyond

- □ Large-Scale (sec. 9.4 not to read)
- Millions of parameters
 - e.g. weight on each phrase probability
 - λ_345698 * P(the house | das haus)
 - λ_345699 * P(the building | das haus)
- Need large dev corpus for tuning

Today

- Parameter tuning
- Reranking
- Hybrid translation
 - Rule-based backbone
 - Reranking
- A glimpse beyond

The LOGON project

- \square MT: Norwegian \rightarrow English
- Tourist texts hiking descriptions
- □ High quality (precision) limited recall
- 2003-2007
- Strategy
 - Mainly rule-based:
 - Semantic transfer
 - Statistical reranking

Alternative strategies

Back bone: Semantic transfer

Minimal Recursion Semantics

🔰 🥑 🔹 🚾 naap	://fjell.emmtee.n	et/logon			•	🛃 🗙 🗖	eadability typography space	P
* 😫 🛛 🔏	1.0G 🛛 🏉 1.00	5 🛛 🏉 Dani 🗐 🗩 Ord	. 🛛 🏉 LOG 🛛 🏉 КU	IN 🛛 🏀 Apé 🔛 L	Jni 🛛 🏉 L 🗴	· 🗌 🟠	• 🔊 - 🖶 • 🔂 <u>P</u> age	• 🕥 T <u>o</u> ols •
R	eset Hytta ha	ar ofte tatt imot turister f results: ⓒ all ◯	ira England. first output: Γ	Ttree IZ mrs s	show 5 💌	Analy results	ze Translate	
		[4 of 4	analyses; proce	essing time: 0.52	seconds]			
		compare select	ction 💌	transfer gene	rate avm	scope		
	TOP h2 INDEX e2	3 4						
#		prpstn_m_rel<0:45> LBL h23 ARG0 e24 MARG h22	def_q_rel<0:5> LBL h19 ARG0 x17 RSTR h18 BODY h20	_hytte_n_rel<0:5> LBL h21 ARG0 x17	_ta*imot_v_re LBL ARG0 ARG1 ARG2	el<15:19> h25 e24 x17 x10	bare_div_q_rel<20:45> LBL h15 ARG0 x10 RSTR h14 BODY h16	
	RELS {		proper_q_rel<38:4	45> _fra_p_rel<34	:37>	_rel<38:45>	_ofte_a_rel<10:14>	}
Ŭ Ū	l	_turist_n_rel<25:33> LBL h9 ARG0 x10	LBL ARG0 RSTR BODY	h6 LBL x8 ARG0 h5 ARG1 h7 ARG2	h9 LBL e11 ARG0 x10 CARG	h12 x8 England	LBL h25 ARG0 e4 ARG1 e24	

Analysis

□ Grammar: NorGram,

- A multipurpose computational grammar based on LFG
- Developed at UiB since 1998
- LOGON has
 - greatly extended grammatical coverage
 - equipped it with an MRS semantics module
 - enhanced efficiency
- □ Processing
 - The XLE system from PARC
 - Morphological processing developed at UiB on top of earlier projects (tagging, UiB & UiO & NTNU)
 - Compositional analysis of compounds

Generation

Grammar

- The English Resource Grammar (ERG)
- A multipurpose computational grammar based on HPSG
- Continuously developed since 1994 (CSLI Stanford)
- Refined, domain-adapted, and extended by LOGON
- Open source, used in other ongoing projects
- □ Processing
 - Adapted technology from DELPH-IN consortium
 - LOGON: forty times faster generation algorithms

Transfer

Grammar

- Hand-coded transfer rules (7000 rules)
- Semi-automatic acquisition of transfer correspondences
 - for open class words
 - from a dictionary (Kunnskapsforlagets store No-En)
 - **(**ca 10 000)
- Processing
 - Typed unification-based formalism for rewriting of MRSs
 - Design and implementation from scratch
 - Non-deterministic rewriting of MRS-fragments

Today

- Parameter tuning
- Reranking
- Hybrid translation
 - Rule-based backbone

To be continued

- Reranking
- A glimpse beyond