INF5820/INF9820

LANGUAGE TECHNOLOGICAL APPLICATIONS

1

Jan Tore Lønning, Lecture 9, 17 Oct. 2014 jtl@ifi.uio.no

Today

- □ Generative vs Discriminative
- Hybrid translation: Rule based + discriminative training
 - Treebanks and parse ranking
 - Generation ranking
 - Ranking end-to-end
- Reranking in statistical MT
- A glimpse beyond

Generaitve modelling

- Make a model of how the data are produced (generated)
- Split it up in smaller steps
- □ Assign probabilities:
 - To the steps
 - Calculate them together to a probability for the data
- Use this to select the (n-)best candidates of how the data are generated
- Examples:
 - Probabilistic context-free grammars
 - Statistical Machine Translation

Discriminative training

- Consider candidate solutions
 - (coming from somewhere)
- □ Have some way to evaluate them
 - Some score, or ranking
 - Or supervised training material
- Choose features
- Use machine learning to select the best from the features
- □ Examples:
 - Malt parser (parser without grammar)
 - Parse ranking
 - Ranking of rule-based MT
 - Reranking in SMT

Today

- □ Generative vs Discriminative
- Hybrid translation: Rule based + discriminative training
 - Treebanks and parse ranking
 - Generation ranking
 - Ranking end-to-end
- Reranking in statistical MT
- A glimpse beyond

Parse ranking

- □ First build a parse bank
 - Demo on
 - <u>http://clarino.uib.no/iness/page</u>
 - (http://erg.delph-in.net/logon)
- Then use this for building a discriminator to select/rank between candidates
- □ Choices:
 - Features
 - Learning algorithm

Compare to prob. grammars

Prob. Grammar (PCFG)

- □ Generative model
- Construct parses
- □ Rank the parses
- Use grammatical/tree features

Parse ranker

- Disciminative model
- Select between
 candidate parses
 constructed elsewhere
- Large freedom in use of features

Generation ranker

- Roughly 30 realizations per MRS
- First attempt:
 - N-gram language model

Ũ	0 0	model	exact match	five-best	WA
		BNC LM	53.24	78.81	0.882
Better:		Log-Linear	72.28	84.59	0.927
		• •			

- Inspired by parse ranking
- Developed on the basis of a parse bank
- Extract features
- Max-ent learning
- Better results!

Ambiguity

- Stochastic models score the alternative outcomes of each component: Parsing, Transfer, Generation
- The per-component scores are calculated together and the final outcomes are ranked.
- □ Component models are trained on corpora and treebanks.

- Should have been conditional probabilities:
 - The probability of an English MRS given a Norwegian MRS:
- Only included absolute probabilities:
 The probability of an English MRS

Alternatives

- 1. First $\arg \max_{i} (F_i | f)$, say F_{2} , then $\arg \max_{j} (E_j | F_2)$ etc
- 2. The most likely path

$$\underset{i,j,k}{\operatorname{arg\,max}} P(e_k \mid E_j)(E_j \mid F_i)(F_i \mid f)$$

3. The most likely translation

$$\arg \max_{e} \sum_{F_i} \sum_{E_j} P(e_k \mid E_j)(E_j \mid F_i)(F_i \mid f)$$

- 1. First $\arg \max_{i} (F_i | f)$, say F_{2} , then $\arg \max_{j} (E_j | F_2)$ etc \Box Theoretically sound:
 - The best parse is in principal independent of the translation, etc.

2. The most likely path

$$\underset{i,j,k}{\operatorname{arg max}} P(e_k \mid E_j)(E_j \mid F_i)(F_i \mid f)$$

- □ Might yield better results:
 - When we see that the translation is unlikely, we may detect mistakes earlier in the process

3. The most likely translation

 $\arg \max_{e} \sum_{F_i} \sum_{E_j} P(e_k \mid E_j)(E_j \mid F_i)(F_i \mid f)$

- Might yield better results:
 - Ambiguities in source language may be the same in target language, e.g. PP-attachement
 - Jeg så mannen i parken med kikkerten
 - I saw the man in the park with the binoculars
 - The same 5 way ambiguity in Norw. and English

Alternatives

- 1. First $\arg \max_{i} (F_i | f)$, say F_{2} , then $\arg \max_{j} (E_j | F_2)$ etc
- 2. The most likely path

$$\underset{i,j,k}{\operatorname{arg\,max}} P(e_k \mid E_j)(E_j \mid F_i)(F_i \mid f)$$

3. The most likely translation

$$\arg \max_{e} \sum_{F_i} \sum_{E_j} P(e_k \mid E_j)(E_j \mid F_i)(F_i \mid f)$$

End-to-end reranking

- □ Why?
 - Possibly correct the individual modules
 - More information
 - Similar to model 3 on last slide
- Features:
 - The 3 modules
 - Lexical trans. probabilities
 - Word order etc.

Results

set	#	chance	first	$\mathbf{L}\mathbf{L}$	top	judge
JHd	1391	34.18	40.95	44.10	49.89	_
JH _t	115	30.84	35.67	38.92	45.74	46.32

Table 4: BLEU scores for various re-ranking configurations, computed over only those cases actually translated by LO-GON (second column). For all configurations, BLEU results on the training corpus are higher by about four points.

Today

- □ Generative vs Discriminative
- Hybrid translation: Rule based + discriminative training
 - Treebanks and parse ranking
 - Generation ranking
 - Ranking end-to-end
- Reranking in statistical MT
- A glimpse beyond

Reranking model for SMT

 Discriminative model
 Take as input an n-best list from a translation system

Reranking vs Tuning

- What is the difference between
 - Tuning and
 - Reranking?

Today

- □ Generative vs Discriminative
- Hybrid translation: Rule based + discriminative training
 - Treebanks and parse ranking
 - Generation ranking
 - Ranking end-to-end
- Reranking in statistical MT
- □ A glimpse beyond

A glimpse beyond: Minimum Bayes Risk

$$\mathbf{e}_{\text{best}}^{\text{MAP}} = \operatorname{argmax}_{\mathbf{e}} p(\mathbf{e}, \mathbf{a} | \mathbf{f})$$
 (9.36)
 $\mathbf{e}_{\text{best}}^{\text{SUM}} = \operatorname{argmax}_{\mathbf{e}} \sum_{\mathbf{a}} p(\mathbf{e}, \mathbf{a} | \mathbf{f})$ (9.37)

□ Cf. LOGON ranking:

- 2. Best path through graph, vs.
- 3. Best translation

MBR

Figure 9.15 Minimum Bayes risk (MBR) decoding: This graph displays potential translations as circles, whose sizes indicate their translation probability. The traditional *maximum a priori* (MAP) decision rule picks the most probable translation. MBR decoding also considers neighboring translations, and favors translations in areas with many highly probable translations.

- Take into consideration distance to other (good) candidates
- □ How to measure distance:
 - BLEU?
 - Ideally, synonyms should come close together