INF5820/INF9820 LANGUAGE TECHNOLOGICAL APPLICATIONS

Jan Tore Lønning, 2014 fall

Probability theory

- □ Khan academy
- <u>http://www.statlect.com/probability_exercises.htm</u>
 - Probability
 - Conditional probability
 - Bayes' rule
 - Independent events
- S1, videregående skole:

<u>http://ndla.no/nb/node/57934</u>

Basic concepts

- Random experiment (or trial) (no: forsøk)
 - Observing a chance event
- Outcomes (utfallene)
 - The possible results of the experiment
- Sample space (utfallsrommet)
 - The set of all possible outcomes

	Experiment	Sample space, Ω
1	Flipping a coin	{H, T}
2	Rolling a dice	{1,2,3,4,5,6}
3	Flipping a coin three times	{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
4	Will it rain tomorrow?	{Yes, No}

Examples

	Experiment	Sample space, Ω
1	Flipping a coin	{H, T}
2	Rolling a dice	{1,2,3,4,5,6}
3	Flipping a coin three times	{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
4	Will it rain tomorrow?	{Yes, No}
5	The first word you hear tomorrow	{u ∣ u is a word}
6	Throwing a dice until you get 6	{1,2,3,4,}
7	The maximum temperature at Blindern for a day	{t t is a real}

Discrete		Continuous
Finite	Infinite	Infinite
1-4	6	7

	Experiment	Event	Formally
2	Rolling a dice	Getting 5 or 6	{5,6}
3	Flipping a coin three times	Getting at least two heads	{ННН, ННТ, НТН, ТНН}

	Experiment	Event	Formally
2	Rolling a dice	Getting 5 or 6	{5,6}
3	Flipping a coin three times	Getting at least two heads	{ННН, ННТ, НТН, ТНН}
5	The first word you hear tomorrow	You hear a noun	{u u is a noun}
6	Throwing a dice until you get 6	An odd number of throws	{1,3,5,}
7	The maximum temperature at Blindern	Between 20 and 22	$\{t \mid 20 \le t \le 22\}$

Operations on events

- \Box Union: A \cap B
- \Box Intersection (snitt): A \cap B
- □ Complement

http://www.google.com/doodles/john-venns-180th-birthday

Probability measure, sannsynlighetsmål

- A probability measure P is a function from events to the interval [0,1] such that:
- 1. $P(\Omega) = 1$
- 2. $P(A) \geq 0$
- 3. If $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$
 - And if A1, A2, A3, ... are disjoint, then $P(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} P(A_j)$

	Experiment	Event	Probability
2	Rolling a dice	Getting 5 or 6	P({5,6})=2/6=1/3
3	Flipping a coin three times	Getting at least two heads	P({HHH, HHT, HTH, THH}) = 4/8

	Experiment	Event	Probability
2	Rolling a dice	Getting 5 or 6	P({5,6})=2/6=1/3
3	Flipping a coin three times	Getting at least two heads	P({HHH, HHT, HTH, THH}) = 4/8
5	The first word you hear tomorrow	You hear a noun	P({u u is a noun})= 0.43?
6	Throwing a dice until you get 6	An odd number of throws	P({1,3,5,})=?
7	The maximum temperature at Blindern	Between 20 and 22	$P(\{t \mid 20 \le t \le 22\})=0.1$

Some observations

□ P(Ø) = 0
□ P(A∪B) = P(A)+P(B) - P(A∩B)
□ If Ω is discrete, then
$$P(A) = \sum_{a \in A} P(\{a\})$$

6-sided fair dice

- □ Two throws: the probability of 2 sixes?
- □ The probability of getting a six in two throws?
- \square 5 dices: the probability of getting 5 equal dices?
- \Box 5 dices: the probability of getting 1-2-3-4-5?
- \Box 5 dices: the probability of getting no 6-s?

Counting methods

Given all outcomes equally likely

P(A) = number of ways A can occur/ total number of outcomes

Mutiplication principle:

if one experiment has *m* possible outcomes and another has *n* possible outcomes, then the two have *mn* possible outcomes

Sampling

Ordered sequences:

- □ Choose k items from a population of n items with replacement: n^k
- □ Without replacement: $n(n-1)(n-2)...(n-k+1) = \frac{n!}{(n-k)!}$

Unordered sequences

- $\square \text{ Without replac.:} \frac{1}{k!} \left(\frac{n!}{(n-k)!} \right) = \left(\frac{n!}{k!(n-k)!} \right) = \binom{n}{k}$
 - the number of ordered sequences/ The number of ordered sequences containing the same k elements

Conditional probability

 $\Box P(A \cap B)$

Both A and B happens

Conditional probability (betinget sannsynlighet)

 $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

The probability of A happens if B happens

□ Multiplication rule $P(A \cap B) = P(A | B)P(B) = P(B | A)P(A)$

 \Box A and B are independent iff $P(A \cap B) = P(A)P(B)$

Example

Throwing two dice

- A: the sum of the two is 7
- **B**: the first dice is 1

- P(B) = 1/6
- $P(A \cap B) = P(\{(1,6)\}) = 1/36 = P(A)P(B)$
- Independence
- **C**: the sum of the two is 5
 - P(C)=4/36 = 1/9
 - $P(C \cap B) = P(\{(1,4)\})=1/36$
 - P(C)P(B)= 1/9 * 1/6 = 1/54
 - Not independent

Bayes theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Jargon:

- P(A) prior probability
- P(A | B) posterior probability

- □ Disease: 1 out of 1000 are infected
- Test:
 - Detects 99% of the infected
 - 2% of the non-infected get a positive test
- □ Given a positive test: what is the chance you are ill?

What are probabilities?

- Example throwing a dice:
- 1. Classical view:
 - The six outcomes are equally likely
- 2. Frequenist:
 - If you throw the dice many, many, many times, the number of 6s approach 16.6666...%
- 3. Bayesian: subjective beliefs