
INF5820, fall 2016
Assignment 3: Document Classification with

Word Embedding Models

November 9, 2016

Deadline 18 Nov., at 23:00, to be delivered in Devilry

Goals
• Learn to use Gensim library to deal with word embeddings in Python (or

any other toolkit on your choice).

• Learn to evaluate existing distributional models.

• Employ pre-trained word embedding models to build a document classifier.

Introduction
Modern distributional semantic algorithms (also known as word embedding
algorithms) can be found inside many intelligent systems dealing with natural
language. They became especially popular after the introduction of prediction-
based models based on artifical neural networks, like Continuous Bag-of-
Words andContinuous Skip-gram algorithms, first implemented in word2vec
tool. Their ultimate aim is to learn meaningful vectors (embeddings) for words
in natural language, such that semantically similar words have mathematically
similar vectors.

It can be profitable to try to implement a distributional algorithm from
scratch (we encourage you to do this); however, in real life tasks it is usually
much more convenient to employ already available implementations and train
your own models with them, or even re-use some of the pre-trained models
in your specific problems. Thus, the current assignment aims to make you
familiar with some of this software. We suggest Gensim library for Python,
but you are free to use other existing tools: TensorFlow1, original word2vec2,
deeplearning4j 3, etc. We provide some pre-code for Python and Gensim.

Please make sure you read through the entire assignment before you start. If
you have any questions, please email andreku@ifi.uio.no, and make sure to take
advantage of the group sessions. Solutions must be submitted through Devilry4

1https://www.tensorflow.org/tutorials/word2vec/
2https://code.google.com/archive/p/word2vec/
3https://deeplearning4j.org/word2vec
4https://devilry.ifi.uio.no/

1

https://www.tensorflow.org/tutorials/word2vec/
https://code.google.com/archive/p/word2vec/
https://deeplearning4j.org/word2vec
https://devilry.ifi.uio.no/


by 23:00 on November 18. Please upload a single .tgz archive including a PDF
with your answers, (heavily commented) code and data files.

Recommended reading
1. Speech and Language Processing. Daniel Jurafsky and James Martin.

3rd edition draft of April 9, 2016. Chapter 15, ‘Vector Semantics’5.

2. Distributed representations of words and phrases and their com-
positionality. Mikolov, Tomas, et al., 2013.6

3. Speech and Language Processing. Daniel Jurafsky and James Martin.
3rd edition draft of April 11, 2016. Chapter 16 ‘Semantics with dense
vectors’7.

4. http://radimrehurek.com/gensim/models/word2vec.html

5. https://rare-technologies.com/word2vec-tutorial/

1 Basic operations

1.1 Semantic Vectors web service
Make yourself familiar with the Semantic Vectors web service (http://ltr.
uio.no/semvec). To play with it, you don’t need to install or download any-
thing. Semantic Vectors features pre-trained word embedding models for En-
glish (trained on the British National Corpus, Wikipedia and Google News) and
Norwegian (trained on Norsk Aviskorpus and NoWAC). All the models were
trained on lemmatized corpora using the Continuous Skip-gram algorithm.
You can produce nearest semantic associates for any given word, calculate co-
sine similarity between pairs of words, visualize words’ location in the reduced
2-dimensional space, etc. Briefly describe in your report what features you feel
are missing from the service.

1.2 Working with models locally
Web services are good for quickly demonstrating a technology, but for the ma-
jority of real-world tasks you would like to have data, models and code at your
hands, especially if you have lots of data to process. We will now work locally
with the models functioning under the hood of Semantic Vectors.

Download the pre-trained English models for BNC and Wikipedia, listed
at http://ltr.uio.no/semvec/en/about#models. They are made available
in the standard binary wordvec format (gzipped) and can be loaded into nearly
any piece of software able to work with predictive distributional models8. If you
use Python (recommended), we provide a sample script at http://ltr.uio.

5https://web.stanford.edu/~jurafsky/slp3/15.pdf
6http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.

pdf
7https://web.stanford.edu/~jurafsky/slp3/16.pdf
8You can use the Gensim method save_word2vec_format(binary=False) to save these

models in text format, making them easier for visual inspection.

2

http://radimrehurek.com/gensim/models/word2vec.html
https://rare-technologies.com/word2vec-tutorial/
http://ltr.uio.no/semvec
http://ltr.uio.no/semvec
http://ltr.uio.no/semvec/en/about#models
http://ltr.uio.no/~andreku/5820/play_with_model.py
http://ltr.uio.no/~andreku/5820/play_with_model.py
https://web.stanford.edu/~jurafsky/slp3/15.pdf
http://ltr.uio.no/~andreku/5820/play_with_model.py
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://ltr.uio.no/~andreku/5820/play_with_model.py
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://ltr.uio.no/~andreku/5820/play_with_model.py
https://web.stanford.edu/~jurafsky/slp3/16.pdf
http://ltr.uio.no/~andreku/5820/play_with_model.py
http://ltr.uio.no/~andreku/5820/play_with_model.py
http://ltr.uio.no/~andreku/5820/play_with_model.py


no/~andreku/5820/play_with_model.py. In order to use it, you should first
install Gensim9;

Play with the downloaded models by running the script with the model
filename as an argument:

python play_with_model.py enwiki.bin.gz

It will load the chosen model and invite you to enter a query word. If the word
is present in the loaded model, its 10 nearest associates together with their
cosine similarity to the query word will be printed. If you enter several words
separated by spaces, the model will try to find out which of them is the most
semantically distant from the others (‘doesn’t belong here’): for example, ‘fire’
doesn’t belong to the list ‘orange, apple, pineapple’.

Find out which Gensim methods the code uses (you can consult the man-
ual from the Recommended reading section). You should be most inter-
ested in the most_similar method. Your task is to analyze the content words
from the first sentence of the abstract to the paper ‘Distributed Representations
of Words and Phrases and their Compositionality ’ by Mikolov et al. (see the
Recommended reading section). Particularly, you are to use the English
Wikipediamodel to find the not-so-nearest semantic associates for these words:
not the first 10 associates (those can be easily produced from the web service
we mentioned above), but the next 5.

1. Modify the provided script (or write your own) so that it was able to take
a text file with query words (one word per line) as an input;

2. create such an input file with all the (lemmatized and lower-cased) content
words from the first sentence of the abstract;

3. modify the script so that for each input word it outputs its 11th, 12th,
13th, 14th and 15th nearest semantic associates (with the cosine
similarities);

4. report the produced associates and similarities.

2 Evaluating word embedding models
After training a word embedding model, one is usually interested in discovering
how good it actually is. One of the popular methods to evaluate distributional
models is to use the so called analogy datasets: quadruplets or proportions of
semantically related words, in which a model has to guess the last element. For
example, for the sequence ‘Paris, France, Oslo, ???’ the model should output
‘Norway’, thus making an analogical inference. Gensim already features
the accuracy method which implements this evaluation approach. In fact, the
sample script we provided will evaluate the loaded model in this way if you
supply the path to an analogy dataset file as a second argument:

python play_with_model.py enwiki.bin.gz questions-words.txt

1. download the analogy dataset introduced by Tomas Mikolov: http://
ltr.uio.no/~andreku/5820/questions-words.txt;

9http://radimrehurek.com/gensim/install.html

3

http://ltr.uio.no/~andreku/5820/play_with_model.py
http://ltr.uio.no/~andreku/5820/play_with_model.py
http://ltr.uio.no/~andreku/5820/questions-words.txt
http://ltr.uio.no/~andreku/5820/questions-words.txt
http://radimrehurek.com/gensim/install.html


2. visually inspect the file, make sure you understand its format;

3. evaluate the BNC and the English Wikipedia models using the down-
loaded dataset as the gold standard;

4. (optional) if your RAM size allows you to load the Google News model
(also listed at http://ltr.uio.no/semvec/en/about#models), evaluate
it as well;

5. report the total accuracy for each model.

Analogy datasets evaluate the embeddings’ ability to capture complex se-
mantic relations between ‘constellations’ of words. However, there is another
(and in fact more traditional) approach to test distributional models: measuring
how good they are in reproducing human experts’ judgments about semantic
similarity between pairs of words.

The idea is that we ask a significant amount of human annotators to rank
word pairs according to their similarity and calculate cosine similarities for these
pairs in the model under evaluation. Then we simply measure the Spearman
rank-order correlation coefficient10 between the two lists of similarities. Corre-
lation close to 1 means that the model is extremely good in mimicking human
judgments, and thus is supposedly superior in most downstream tasks. There
are many published semantic similarity datasets, and lots of academic discussion
goes on around them.

Unfortunately, there is no automated way to evaluate distributional models
with similarity datasets in Gensim yet. Your task is to implement it.

1. Download Simlex-999 dataset from https://www.cl.cam.ac.uk/~fh295/
simlex.html;

2. read its description on the web page;

3. visually inspect the dataset, make sure you understand its format;

4. write code that takes as an input the dataset file and the model file and
outputs the model’s correlation with Simlex-999 similarity judgments.

• to produce cosine similarities for word pairs with Gensim, you would
need the similarity method

• Spearman correlation between lists of real values can be calculated
in Python using scipy.stats.spearmanr function11.

5. Report evaluation results for all the downloaded models.

6. Are the results different from the analogy dataset evaluation? If so, pro-
pose possible explanations.

10https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
11https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.

html

4

http://ltr.uio.no/semvec/en/about#models
https://www.cl.cam.ac.uk/~fh295/simlex.html
https://www.cl.cam.ac.uk/~fh295/simlex.html
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html


3 Document classification with word embeddings
Distributional semantics can represent entities larger than words: phrases, sen-
tences and whole documents. This makes it possible to train semantically-aware
text classifiers. In this task, you will have to build document representations
based on the same pre-trained English models that we played with above.

Our texts come from the Signal Media dataset12, which contains one million
English news texts from September 2015. Download the archive here:http:
//ltr.uio.no/~andreku/5820/signal_lemmatized.tar.gz. This is a sample
from the whole dataset, with several thousand of news articles from 4 sources:

• Individual.com (general news aggregator);

• 4Traders (trading, stock exchange news);

• Mail Online UK (British newspaper The Daily Mail);

• Latest Nigerian News (news from Nigeria).

Each file corresponds to one source, inside the files one line corresponds to one
news article. Data format (tab-separated):

• Date

• Source (class)

• Type (always News in this sample)

• Text

The texts are already lemmatized, and stop words are removed, thus, they are
ready for processing with distributional models.

Suppose we want to train a classifier which will be able to predict the source
of a news text based on the words used in it. For this, we need to somehow jump
from documents as character strings to documents as numerical representations
that can be fed to any mainstream machine learning algorithm.

Of course, one obvious way to do this is to represent all the documents as
bags-of-words: that is, extract the collection vocabulary (the union of all word
types in the texts) and count frequency of each word type in each document.
Documents are then represented as sparse vectors of the size equal to the size of
the vocabulary. Machine learning classifiers can be easily trained on such data.

However, we would like to:

1. leverage semantic information contained in the pre-trained distribu-
tional models;

2. preferably work with dense low-dimensional vectors, not with sparse
high-dimensional vectors produced by the bag-of-words approach.

Your task is to come up with semantically-aware representations of the doc-
uments in this collection and test how good they are in predicting documents’
classes.

1. Write code to extract texts from the dataset;
12http://research.signalmedia.co/newsir16/signal-dataset.html

5

http://ltr.uio.no/~andreku/5820/signal_lemmatized.tar.gz
http://ltr.uio.no/~andreku/5820/signal_lemmatized.tar.gz
http://research.signalmedia.co/newsir16/signal-dataset.html


2. Implement any approach that uses pre-trained distributional models to
produce meaningful dense representations of the extracted texts:

• the most straightforward way to do this is with the semantic finger-
prints algorithm (averaging embeddings of words in the document),
which will be extensively covered in the Lecture 4 ‘Beyond words:
distributional representations of texts’;

• however, you are free to use other approaches: Paragraph Vector
(doc2vec)13, deep inverse regression14, or anything else.

3. convert lemmatized texts to dense vector representations and save them
into one file, in which each line corresponds to one news text, starts with
the class label followed by a tab, and continues with the tab-separated
components of the dense vector corresponding to this text (see a toy ex-
ample at http://ltr.uio.no/~andreku/5820/example_dataset.tsv);

4. use the provided Python script at http://ltr.uio.no/~andreku/5820/
classifier.py to read your dataset, train a standard logistic regres-
sion classifier and evaluate it (the script requires scikit-learn library in-
stalled15):

• python classifier.py dataset.tsv

5. the script will output precision, recall and f1-score both on the raw training
set and with the 10-fold cross-validation;

6. report these values for all the pre-trained models you used.

Compare the performance of different models. What model provided the
best embeddings for this classification task? Why is that so, in your opinion?

Happy coding!

13https://github.com/RaRe-Technologies/movie-plots-by-genre/blob/master/
Document%20classification%20with%20word%20embeddings%20tutorial.ipynb

14https://github.com/TaddyLab/gensim/blob/deepir/docs/notebooks/deepir.ipynb
15http://scikit-learn.org/stable/install.html

6

http://ltr.uio.no/~andreku/5820/example_dataset.tsv
http://ltr.uio.no/~andreku/5820/classifier.py
http://ltr.uio.no/~andreku/5820/classifier.py
https://github.com/RaRe-Technologies/movie-plots-by-genre/blob/master/Document%20classification%20with%20word%20embeddings%20tutorial.ipynb
https://github.com/RaRe-Technologies/movie-plots-by-genre/blob/master/Document%20classification%20with%20word%20embeddings%20tutorial.ipynb
https://github.com/TaddyLab/gensim/blob/deepir/docs/notebooks/deepir.ipynb
http://scikit-learn.org/stable/install.html

	Basic operations
	Semantic Vectors web service
	Working with models locally

	Evaluating word embedding models
	Document classification with word embeddings

