You may answer in English, Norwegian, Danish or Swedish.

You should answer all questions. The weights of the var-
ious questions are indicated.

You should read through the whole set to see whether
anything is unclear so that you can ask your questions to
the teachers when they arrive.

If you think some assumptions are missing, make your
own and explain them!

1 Machine Translation Evaluation (20%)

To rapidly develop statistical machine translation systems, it is important
to have tools for automatic evaluation of the systems. A famous such tool
is the BLEU metric which can be expressed by either of the following two
equivalent formulas.

n
T 1
BLEU-n = in(l ——-,0 —Inp;
n = exp <m1n(=)+ E - npz>

i=1

BLEU-n = min(e!~ 9, 1) x ([] pi)»
=1

Explain the main ideas of the BLEU metric and in particular explain
what p;, n, ¢ and r in the formula stand for.

Solution BLEU is used for evaluating an MT-system, M, which
translates from a source language, SL, to a target language, TL. One
uses a text, ST, from the source language for which one has one or
more manually crafted reference translations in the target language,
Ry, Ra, ..., Ry, for n > 1. The system produces a candidate transla-
tion of ST into TL, call it C, which is then compared to Ry, R, ..., R,.

BLEU can be considered a modification of word-based precsision and
recall. It modifies it in two important respects. First, it does not
only consider which words that are common to C and the Rj-s; it also
considers longer n-grams. In the formula for BLEU-n, n is a parameter
which in principle may be any number, but it is typically selected to
be 3, 4, 5, or 6. BLEU-n considers words, bigram, trigram, etc. up to
and including n-grams of length n.

Second, BLEU is based only on precision, it does not consider recall.
It only considers whether n-grams in C can be found in corresponding
sentences in one of the R;-s, but not the other way around.

p; is the n-gram precision for n-grams of length i. It can be expressed
by
>sec(Xon-grames Count clip (i-gram, s, 5;))
ZseC(Zn—gmm es Count (i-gram, s))

The denominator counts the total number of i-grams in C, while the
numerator counts how many of these are found in at least one of the
Rj-s. Both counts are done for the whole corpus, i.e., it is calculated
for each sentence s and then added over all the sentences. Special care
must be taken for i-grams that occur more than one time in C, say k
times. The number of occurrences is then counted m times where m is
the smaller number of k and the number of occurrences of this i-gram
in the s j where it occurs the most times.

Since BLEU does not consider recall, it uses a penalty for short trans-
lations, calculated by r and c. Here ¢ is the length of C, i.e., the sum
of the lengths of the sentences in C. To calculate 7, for each sentence,
sm, in C, choose the corresponding sentence 7, from the R;-s that is
most similar to s,, in length. Then 7 is the sum of the lengths of all
the 7,,-s.

Assume an MT system produces the candidate translation
(1) the elk was chasing the little rat
and it should be BLEU evaluated against the two reference translations

(2) a big moose was chasing the little mouse
(3) the big elk was following a strange little brown animal

What are the values of p1, pa, p3, pa, ¢, r in this example?
(You do not have to calculate the full BLEU score).

¢ = the length of sentence (1) =7
=38

r = the length of sentence (2)

P4 = i There is only one 4-gram: was chasing the little

p3 = % was chasing the and chasing the little

p2 = % elk was and was chasing and chasing the and the little
p1 = % the counts once

2 Phrase-based Translation (30%)

We are going to translate the following Norwegian sentence into English
using phrase-based statistical machine translation.

(4)

elgen jagde musa

We assume the following simple phrase translation table (all other alterna-
tives have probability 0):

elgen | the moose) = 0.5

jagde | chased) = 0.3
jagde | was chasing) = 0.3

¢(
¢(elgen | the elk) = 0.3
(
(

¢(musa | the mouse) = 0.5

To simplify, we will in the following only consider the translation alternatives
without reordering.

(a)

We will use beam search for the decoding. Draw the search graph for
the decoding algorithm presupposing no reordering (and no recombi-
nation).

See drawing!

One technique for reducing the search space is called hypothesis recom-
bination. Redraw the search graph with recombination using a bigram
language model. What are the requirements for recombination?

See drawing!

The requirement for recombination is that the two hypotheses cover
the same part of the input sentence, and that the n — 1 last words
of the output hyptheses are the same assuming an n-gram language
model. Thus, with a bigram model this requirement amounts to that
the last words in the two output hypotheses are identical.

Assume the following from the language model where p(ws | w1) is the
probability of ws being the next word after w;, and # indicates start
or end of sentence.

p(the | #) =0.1
plelk | the) = 0.0002

p(moose | the) = 0.0001
p(was | elk) = 0.1
p(was | moose) = 0.1

chased | moose) = 0.01
chasing | was) = 0.001
p(the | chased) = 0.5
p(the | chasing) = 0.5
p(mouse | the) = 0.001
p(# | mouse) = 0.1

SRS

(
(
(
(
(
p(chased | elk) = 0.01
(
(
(
(
(
(

What will be the highest ranked candidate translation? State reasons
for your answer.

There are 4 candidate translations:

1. the moose chased the mouse
2. the moose was chasing the mouse
3. the elk chased the mouse

4. the elk was chasing the mouse

We first compare (1) to (3). All probabilities are the same except for
two; the translation probabilities for the elk vs. the moose and bigram
probabilities for p(elk | the) vs. p(moose | the).

We see that ¢(elgen | the moose) x p(moose | the) = 0.5 x 0.0001 =
0.00005 while ¢(elgen | the elk) x p(elk | the) = 0.3 x 0.0002 = 0.00006.

Hence (3) is preferred to (1). By the same reasoning (4) is preferred
to (2).

Comparing (3) to (4), we again consider the parts of the calcula-
tion that are different. ¢(jagde | chased) x p(chased | elk) x p(the |
chased) = 0.3 x 0.01 x 0.5 = 0.0015 while ¢(jagde | was chasing) x
p(was | elk) x p(chasing | was) x p(the | chasing) = 0.3 x 0.1 x 0.001 x
0.5 = 0.000015. Hence, (3) is the preferred reading.

3 Semantic models in general (10%)

How do you understand the difference between distributional and distributed
word meaning models? Can a model be both distributional and distributed?

A model can be both distributional and distributed: in fact, any word
embedding model with reduced dimensionality is an example of this. All
corpus-based word meaning models are ‘distributional’ in the sense that
they are derived from distributions of word co-occurrences in the under-
lying corpora. ‘Distributed’ means something else: if we use dense word
vectors (hundreds of components), there is little chance for the components
of these vectors to be directly mapped to some semantic ‘features’. Instead,
words and concepts are represented with combinations of the components’
values, or multiple neuron activations, using the artificial neural networks
terminology. Each semantic feature (for example, ‘the property of being
an animal’) is distributed among many components, and each component
(neuron) participates in representing many different features.

This is not the case for the standard count-based models without dimen-
sionality reduction: in them, each vector component is directly mapped to a
particular context word. However, prediction-based models, like CBOW or
Continuous SkipGram are both distributional and distributed.

4 Count-based models (20%)

You are given a symmetric matrix M with the normalized values of word
co-occurrences frequency in some text corpus:

computer laptop mainframe small puppy dog

computer 2 2 1 0 0 0
laptop 2 2 0 1 0 0
mainframe 1 0 2 0 0 0
small 0 1 0 2 1 0
puppy 0 0 0 1 2 2
dog 0 0 0 0 2 2

4.1 Calculating similarities

Each row in M is a distributional vector for the corresponding word. Rank
vectors for all the words by their cosine distances to the vector of the word
‘puppy’. Report the distances as well (you can provide approximate values,
no need for extreme precision).
‘puppy’ vector: [0, 0, 0, 1, 2, 2] (unit-normalized: [0, 0, 0, %, %, %])
Similarities to ‘puppy’:

1. dog (~ 0.94)

8
38

2. small (34 ~ 0.54)

S

3. laptop (% ~ 0.11)
4. computer (0)

5. mainframe (0)

4.2 Visualizing vectors

It is often useful to ‘embed’ semantic vectors of words into a 2-dimensional
space to visualize how they are related to each other. Use the words ‘com-
puter’ and ‘small’ as the horizontal and vertical dimensions and embed the
vectors of all the other words into this 2D space. Plot it.

One should simply use the co-occurence counts with these two words as
the horizontal and vertical axis. The resulting plot should look approxi-
mately like this:

1.2

1.0+ fuppy. : : daptop

0.8

0.6

small

0.4}

0.2

0.0k &log gnainframe.

-02 ; ; H ; ;
Z0.5 0.0 0.5 1.0 15 2.0 2.5

computer

5 Prediction-based models (10%)

Suppose you are training a CBOW model with the vector size 300 on a
corpus containing 100 000 word types and 100 000 000 word tokens. You
chose 5 words as the width of your symmetric window.

1. What will be the dimensionalities (shapes) of the input matriz and the
output matriz in your neural network architecture?

The input matrix shape will be 100000:300, and the output matrix
shape will be 300:100000.

2. At training time, what is the input to the neural network at each
prediction step? Give an example of a single prediction with any real
sentence.

In the CBOW algorithm, the input at the prediction step is the sum or
the average of the vectors (embeddings) of the left and right neighbors
of the current word. Let’s consider the sentence ‘The cat sits on a mat’.
Suppose our symmetric window size is 1 (one word to the left and one
word to the right), and we are now at the word ‘sits’. Then what we
feed to the predictor is the current input vectors for the words ‘cat’
and ‘on’ (averaged or summed). We then calculate the cosine similar-
ities of the resulting ‘context vector’ to the current output vectors
of all the words in the vocabulary. These similarities are transformed
into the probability distribution using softmax.

After that, we can easily calculate the prediction error on each word
(the ‘correct’ prediction is 1 for ‘sits” and 0 for all other words). This
error is then back-propagated to the output and the input matrices,
thus shifting input vectors for ‘cat” and ‘on’ a bit closer to the output
vector of ‘sits’. Then we move on to the next word.

6 Comparing distributional models (10%)

You are studying semantic shifts that words undergo over time. You trained

several distributional models on corpora of texts produced in different decades

of the XX century. Enumerate possible ways to discover the degree of se-

mantic change for some word a. Suppose that a is present in all the models.
Briefly describe pros and cons of each method.

1. Compare ranked lists of a nearest associates in different models (using
Jaccard distance or Kendall’s 7, etc). This is easy and does not demand
any complex calculations. However, this comparison is indirect and you
can’t extract really complex quantitative laws of diachronic change this
way.

2. Compile a short list of words for which you are sure that their meaning
remains stable across time. Use this list to learn a linear transforma-
tion matrix from all models to some ‘proxy’ model (chosen arbitrarily
from what you have). Then one can ‘project’ vectors of a from differ-
ent models to this ‘proxy’ semantic space, thus making them directly
comparable (by cosine similarity). This allows to perform full-scale
vector space analysis, but the list of ‘stable’ words is needed, which
can be difficult to compile.

3. ‘Squeeze’ the whole semantic space of all models into the ‘proxy’ se-
mantic space, for example using the orthogonal Procrustes transfor-
mation. Then they essentially become one model, and one can easily
measure whatever distances one wants between any pairs of words (for
example agos and agps). With this approach, it is possible to perform
full-scale analysis without any ad hoc word lists: the algorithm will
just try to rotate and scale the spaces to make them maximally like
each other without losing the pairwise distances between words. How-
ever, this can result in omitting some important non-trivial differences
between the semantic spaces. Also, the transformation itself is rather
computationally expensive.

4. etc...

(These variants are basic, but the students can easily come up with some-
thing else as well.)

END

Without recombination and
reordering

chased the mouse

]‘ the moose ‘ was chasing the mouse
‘ the elk ‘ chased

was chasing the mouse

the mouse

il

Recombination,
oigram language model

chased the mouse

]‘ the moose was chasing

‘ the elk

Recombination:
trigram language model

chased the mouse

was chasing the mouse

]‘ the moose

‘ the elk

First step, general case
(with reordering)

the mouse

the moose

i

the elk

I

chased

I

was chasing

	INF5820_2016_solution.pdf
	Machine Translation Evaluation (20%)
	Phrase-based Translation (30%)
	Semantic models in general (10%)
	Count-based models (20%)
	Calculating similarities
	Visualizing vectors

	Prediction-based models (10%)
	Comparing distributional models (10%)

	figures.pdf

