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Our motivation

Number of publications on word embeddings in Association for
Computational Linguistics Anthology (http://aclanthology.info/)

2

http://aclanthology.info/


Mapping words in brain

We want a machine to imitate human brain and understand meaning of
words.
How we can design it?
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I Vector space models of meaning (based on distributional semantics)
have been here for already several decades [Turney et al., 2010].

I Recent advances in employing machine learning to train
distributional models allowed them to become state-of-the-art and
literally conquer the computational linguistics landscape.

I Now they are commonly used both in research and in large-scale
industry projects (web search, opinion mining, tracing events,
plagiarism detection, document collections management etc.)

I All this is based on the ability of such models to efficiently calculate
semantic similarity between linguistic entities.

I In this course, we will cover why and how distributional models
actually work.

4



I Vector space models of meaning (based on distributional semantics)
have been here for already several decades [Turney et al., 2010].

I Recent advances in employing machine learning to train
distributional models allowed them to become state-of-the-art and
literally conquer the computational linguistics landscape.

I Now they are commonly used both in research and in large-scale
industry projects (web search, opinion mining, tracing events,
plagiarism detection, document collections management etc.)

I All this is based on the ability of such models to efficiently calculate
semantic similarity between linguistic entities.

I In this course, we will cover why and how distributional models
actually work.

4



I Vector space models of meaning (based on distributional semantics)
have been here for already several decades [Turney et al., 2010].

I Recent advances in employing machine learning to train
distributional models allowed them to become state-of-the-art and
literally conquer the computational linguistics landscape.

I Now they are commonly used both in research and in large-scale
industry projects (web search, opinion mining, tracing events,
plagiarism detection, document collections management etc.)

I All this is based on the ability of such models to efficiently calculate
semantic similarity between linguistic entities.

I In this course, we will cover why and how distributional models
actually work.

4



I Vector space models of meaning (based on distributional semantics)
have been here for already several decades [Turney et al., 2010].

I Recent advances in employing machine learning to train
distributional models allowed them to become state-of-the-art and
literally conquer the computational linguistics landscape.

I Now they are commonly used both in research and in large-scale
industry projects (web search, opinion mining, tracing events,
plagiarism detection, document collections management etc.)

I All this is based on the ability of such models to efficiently calculate
semantic similarity between linguistic entities.

I In this course, we will cover why and how distributional models
actually work.

4



I Vector space models of meaning (based on distributional semantics)
have been here for already several decades [Turney et al., 2010].

I Recent advances in employing machine learning to train
distributional models allowed them to become state-of-the-art and
literally conquer the computational linguistics landscape.

I Now they are commonly used both in research and in large-scale
industry projects (web search, opinion mining, tracing events,
plagiarism detection, document collections management etc.)

I All this is based on the ability of such models to efficiently calculate
semantic similarity between linguistic entities.

I In this course, we will cover why and how distributional models
actually work.

4



Contents

1 Our motivation

2 Simple demo

3 Distributional hypothesis

4 Vector space models

5 Calculating similarity: a first glance

6 Summing up

7 In the next week

4



Simple demo

Distributional semantic models for English (and Norwegian)
http://ltr.uio.no/semvec

You can entertain yourself during the lecture :-)
Later we will look closer at the features of this service.
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Distributional hypothesis

Tiers of linguistic analysis

Computational linguistics can comparatively easy model lower tiers of
language:
I graphematics – how words are spelled
I phonetics – how words are pronounced
I morphology – how words inflect
I syntax – how words interact in sentences
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Distributional hypothesis

To model means to densely represent important features of some
phenomenon. For example, in a phrase ‘The judge sits in the court’,
the word ‘judge’ :

1. consists of 3 phonemes [ j e j ];
2. is a singular noun in the nominative case;
3. functions as a subject in the syntactic tree of our sentence.

Such local representations describe many important features of the
word ‘judge’. But not meaning.
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Distributional hypothesis

But how to represent meaning?

I Semantics is difficult to represent formally.
I We need machine-readable word representations.
I Words which are similar in their meaning should possess

mathematically similar representations.
I ‘Judge’ is similar to ‘court’ but not to ‘kludge’, even though their

surface form suggests the opposite.
I Why so?
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Distributional hypothesis

Arbitrariness of a linguistic sign

Unlike road signs, words do not possess a direct link between form and
meaning.
We know this since Ferdinand de Saussure, and in fact structuralist
theory influenced distributional approach much.
‘Lantern’ concept can be expressed by any sequence of letters or
sounds:

I lantern
I lykt
I лампа
I lucerna
I гэрэл
I ...
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Distributional hypothesis

How do we know that ‘lantern’ and ‘lamp’ have similar meaning? What
is meaning, after all?

And how we can make computers understand this?

Possible data sources
The methods of computationally representing semantic relations in
natural languages fall into two large groups:
1. Manually building ontologies (knowledge-based approach). Works

top-down: from abstractions to real texts. For example, Wordnet.
2. Extracting semantics from usage patterns in text corpora

(distributional approach). Works bottom-up: from real texts to
abstractions.

The second approach is the topic of this course.
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Distributional hypothesis

Meaning is actually a sum of contexts and distributional differences will
always be enough to explain semantic differences:
I Words with similar typical contexts have similar meaning.

I The first to formulate: Ludwig Wittgenstein (1930s) and
[Harris, 1954].

I ‘You shall know a word by the company it keeps’ [Firth, 1957]
I Distributional semantics models (DSMs) are built upon lexical

co-occurrences in a large training corpus.
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Distributional hypothesis

It is important to distinguish between syntagmatic and paradigmatic
relations between words.

I Words are in syntagmatic relation if they typically occur near each
other (‘eat bread’). It is also called first order co-occurrence.

I Syntagm is a kind of an ordered list.
I Words are in paradigmatic relation if the same neighbors typically

occur near them (humans often ‘eat’ both ‘bread’ and ‘butter’). It is
also called second order co-occurrence. The words in such a
relation may well never actually co-occur with each other.

I Paradigm is a kind of a set of substitutable entities.
We are interested mostly in paradigmatic relations (bread is
semantically similar to butter, but not to ‘fresh’).
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Vector space models

The first and primary method of representing
meaning in distributional semantics – semantic
vectors.
First invented by Charles Osgood, American
psychologist, in the 1950s [Osgood et al., 1964],
then developed by many others.
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Vector space models

In distributional semantics, meanings of particular words are
represented as vectors or arrays of real values derived from frequency
of their co-occurrences with other words (or other entities) in the
training corpus.

I Words (or, more often, their lemmas) are vectors or points in
multi-dimensional semantic space

I At the same time, words are also axes (dimensions) in this space
(but we can use other types of contexts: documents, sentences,
even characters).

I Each word A is represented with the vector ~A. Vector dimensions or
components are other words of the corpus’ lexicon (B,C,D...N).
Values of components are frequencies of words co-occurrences.

In the simplest case, co-occurrences are just words occurring next to
each other in the text. But contexts can be more complex!
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Vector space models

A simple example of a symmetric word-word co-occurrence matrix:
vector meaning hamster corpus weasel animal

vector 0 10 0 8 0 0
meaning 10 0 1 15 0 0
hamster 0 1 0 0 20 14
corpus 8 15 0 0 0 2
weasel 0 0 20 0 0 21
animal 0 0 14 2 21 0

We produced meaningful representations in a completely unsupervised
way!
Note how the ‘animal ’ vector is different from vocabulary index
representations (sometimes called one-hot vectors):
‘Animal’: word number 1000 (or so).
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Vector space models

Similar words are close to each other in the space defined by their
typical co-occurrences
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Vector space models

Of course one can somehow weight absolute frequency of
co-occurrences to make sure that we pay less attention to ‘noise’
co-occurrences.

For example, Dice coefficient:

Dice(w ,w ′) =
2c(w ,w ′)

c(w) + c(w ′)
(1)

where c(w) – absolute frequency of w word,
c(w ′) – absolute frequency of w ′ word
c(w ,w ′) – frequency of w and w ′ occurring together (collocation).
...or other weighting coefficients: tf-idf, log-likelihood, (positive)
pointwise mutual information (PMI), etc.
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...or other weighting coefficients: tf-idf, log-likelihood, (positive)
pointwise mutual information (PMI), etc.
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Vector space models

Positive pointwise mutual information (PPMI) is the most common
frequency weighting measure:

PPMI(w ,w ′) = max(log2
c(w ,w ′)

c(w) ∗ c(w ′)
,0) (2)

where c(w) – probability of w word,
c(w ′) – probability of w ′ word
c(w ,w ′) – probability of w and w ′ occurring together.

Problem: rare words get high PPMI values. Can be alleviated by
smoothing.
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Vector space models

When building a co-occurrence matrix we can take into account not
only immediate neighbors, but also words at some distance from our
‘focus word’:

The brain is an organ that serves as the center of the nervous system
in all vertebrate and most invertebrate animals. The brain is located in
the head, usually close to the sensory organs for senses such as
vision. The brain is the most complex organ in a vertebrate’s body. In
a human, the cerebral cortex contains approximately 15–33 billion
neurons, each connected by synapses to several thousand other
neurons.
Context width is defined at the beginning of building the matrix. Narrow
windows favor ‘stricter’ semantic representations, while large windows
produce more ‘associative’ models.
One can also change context words weights depending on the distance
from the focus word, on their right or left position, or on the type of a
syntactic arc between two words (subjectof / objectof )...Possibilities
are endless.
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Calculating similarity: a first glance

Curse of dimensionality

I With large corpora, we can end up with millions of dimensions
(axes, words).

I But the vectors are very sparse, most components are zero.
I One can reduce vector sizes to some reasonable values, and still

retain meaningful relations between them.
I Such dense vectors are called ‘word embeddings’.
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Calculating similarity: a first glance

300-D vector of ‘tomato’
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Calculating similarity: a first glance

300-D vector of ‘cucumber’
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Calculating similarity: a first glance

300-D vector of ‘philosophy’

Can we prove that tomatoes are more similar to cucumbers than to
philosophy?

23



Calculating similarity: a first glance

300-D vector of ‘philosophy’

Can we prove that tomatoes are more similar to cucumbers than to
philosophy?

23



Calculating similarity: a first glance

Semantic similarity between words is usually measured by the cosine
of the angle between their corresponding vectors (takes values from -1
to 1).

I Similarity lowers as the angle between word vectors grows.
I Similarity grows as the angle lessens.

cos(w1,w2) =
~V (w1)× ~V (w2)

|~V (w1)| × |~V (w2)|
(3)

(dot product of unit-normalized vectors)
cos(tomato,philosophy) = 0.09
cos(cucumber ,philosophy) = 0.16
cos(tomato, cucumber) = 0.66

Cosine=1: vectors point at the same direction;
Cosine=0: vectors are orthogonal;
Cosine=-1: vectors point at the opposite directions.
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Calculating similarity: a first glance

Embeddings reduced to 2 dimensions and visualized by t-SNE
algorithm

[Van der Maaten and Hinton, 2008]
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Calculating similarity: a first glance

Important note
I There are several types of semantic similarity and relatedness.

I ‘Gold ’ and ‘silver ’ are semantically similar to each other but in quite
a different way, than, say, ‘cup’ and ‘mug’.

I Can DSMs differentiate between synonyms, antonyms, meronyms,
holonyms, etc?

I More about this in the forthcoming lecture on practical aspects of
using DSMs (including evaluation).

27



Calculating similarity: a first glance

Important note
I There are several types of semantic similarity and relatedness.
I ‘Gold ’ and ‘silver ’ are semantically similar to each other but in quite

a different way, than, say, ‘cup’ and ‘mug’.

I Can DSMs differentiate between synonyms, antonyms, meronyms,
holonyms, etc?

I More about this in the forthcoming lecture on practical aspects of
using DSMs (including evaluation).

27



Calculating similarity: a first glance

Important note
I There are several types of semantic similarity and relatedness.
I ‘Gold ’ and ‘silver ’ are semantically similar to each other but in quite

a different way, than, say, ‘cup’ and ‘mug’.
I Can DSMs differentiate between synonyms, antonyms, meronyms,

holonyms, etc?

I More about this in the forthcoming lecture on practical aspects of
using DSMs (including evaluation).

27



Calculating similarity: a first glance

Important note
I There are several types of semantic similarity and relatedness.
I ‘Gold ’ and ‘silver ’ are semantically similar to each other but in quite

a different way, than, say, ‘cup’ and ‘mug’.
I Can DSMs differentiate between synonyms, antonyms, meronyms,

holonyms, etc?
I More about this in the forthcoming lecture on practical aspects of

using DSMs (including evaluation).

27



Contents

1 Our motivation

2 Simple demo

3 Distributional hypothesis

4 Vector space models

5 Calculating similarity: a first glance

6 Summing up

7 In the next week

27



Summing up

Questions?

INF5820
Distributional Semantics: Extracting Meaning from Data

Lecture 1:
Linguistic Foundations of Distributional Semantics

Homework: play with
http://ltr.uio.no/semvec

28
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In the next week

Main approaches to produce word embeddings

1. Point-wise mutual information (PMI) association matrices, factorized
by SVD (so called count-based models) [Bullinaria and Levy, 2007];

2. Predictive models using artificial neural networks, introduced in
[Bengio et al., 2003] and [Mikolov et al., 2013] (word2vec):

I Continuous Bag-of-Words (CBOW),
I Continuous Skip-Gram (skipgram);

3. Global Vectors for Word Representation (GloVe)
[Pennington et al., 2014];

4. ...etc

Two last approaches became super popular in the recent years and
boosted almost all areas of natural language processing.
Their principal difference from previous methods is that they actively
employ machine learning.
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