
INF5820
Distributional Semantics: Extracting Meaning from Data

Lecture 2
Distributional and distributed: inner mechanics

of modern word embedding models

Andrey Kutuzov
andreku@ifi.uio.no

2 November 2016

1



Contents

1 Brief recap

2 Count-based distributional models

3 Predictive distributional models: Word2Vec revolution

4 The followers: GloVe and the others

5 In the next week

1



Brief recap

Main approaches to produce word embeddings

1. Point-wise mutual information (PMI) association matrices, factorized
by SVD (so called count-based models) [Bullinaria and Levy, 2007];

2. Predictive models using artificial neural networks, introduced in
[Bengio et al., 2003] and [Mikolov et al., 2013] (word2vec):

I Continuous Bag-of-Words (CBOW),
I Continuous Skip-Gram (skipgram);

3. Global Vectors for Word Representation (GloVe)
[Pennington et al., 2014];

4. ...etc

Two last approaches became super popular in the recent years and
boosted almost all areas of natural language processing.
Their principal difference from previous methods is that they actively
employ machine learning.
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Brief recap

I Distributional models are based on distributions of word
co-occurrences in large training corpora;

I they represent words as dense lexical vectors (embeddings);
I the models are also distributed: each word is represented as

multiple activations (not a one-hot vector);
I particular vector components (features) are not directly related to

any particular semantic ‘properties’;
I words occurring in similar contexts have similar vectors;
I one can find nearest semantic associates of a given word by

calculating cosine similarity between vectors.
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Brief recap

Nearest semantic associates

Brain (from a model trained on English
Wikipedia):
1. cerebral 0.74
2. cerebellum 0.72
3. brainstem 0.70
4. cortical 0.68
5. hippocampal 0.66
6. ...
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Brief recap

Works with multi-word entities as well

Alan_Turing (from a model trained on
Google News corpus (2013)):
1. Turing 0.68
2. Charles_Babbage 0.65
3. mathematician_Alan_Turing 0.62
4. pioneer_Alan_Turing 0.60
5. On_Computable_Numbers 0.60
6. ...
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Count-based distributional models

Traditional distributional models are known as count-based.

How to construct a good count-based model

1. compile full co-occurrence matrix on the whole corpus;
2. weigh absolute frequencies with positive point-wise mutual

information (PPMI) association measure;
3. factorize the matrix with singular value decomposition (SVD) to

reduce dimensionality and arrive from sparse to dense vectors.

For more details, see [Bullinaria and Levy, 2007] and methods like
Latent Semantic Indexing (LSI) or Latent Semantic Analysis (LSA).
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Count-based distributional models

1. Matrix compilation
For each target word t we count how many times each context word c
appeared in a pre-defined window around this target word.

The result is a vector of conditional probabilities
p(c|t)
for each target word.
The matrix of these vectors constitutes vector semantic space (VSM).

Now we have to scale and weigh absolute frequency counts.
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Count-based distributional models

2. Probabilities weighting

PPMI (Positive point-wise mutual information) association measure
seems to be the optimal choice. Let’s recall:

PPMI(t , c) = max(log2
p(t , c)

p(t) ∗ p(c)
,0) (1)

where p(t) – probability of t word in the whole corpus,
p(c) – probability of c word in the whole corpus,
p(t , c) – probability of t and c occurring together.
As a result, we pay less attention to random ‘noise’ co-occurrences.
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Count-based distributional models

3. Matrix factorization
To reduce the number of dimensions in the VSM, we can use one of
many matrix factorization methods. The idea is to generate a
lower-rank approximation of the original matrix (to truncate it),
maximally retaining the relations between the vectors. It essentially
means to find the most important dimensions of the data set, along
which most variation happens.

The most popular method to generate matrix approximations of any
given rank k is Singular Value Decomposition or SVD, based on
extracting so called singular values of the initial matrix. Other methods
include PCA, factor analysis, etc, but truncated SVD is probably most
widely used in NLP.
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Count-based distributional models

3. Matrix factorization
As a result, each word vector is now transformed into a dense
embedding of k dimensions (typically hundreds), thus significantly
reducing the dimensionality and often improving the models’
performance.

Matrix factorization can be easily performed in Python using, for
example, Numpy: numpy.linalg.svd
Problem: SVD is often computationally expensive, especially for large
vocabularies. The alternative is given by the predict(ive) models.
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Predictive distributional models: Word2Vec revolution

Machine learning

I Some problems are so complex that we can’t formulate exact
algorithms for them. We do not know ourselves how our brain does
this.

I To solve such problems, one can use machine learning: attempts to
build programs which learn to make correct decisions on some
training material and improve with experience;

I One of popular machine learning approaches for language
modeling – artificial neural networks.

11



Predictive distributional models: Word2Vec revolution

Machine learning
I Some problems are so complex that we can’t formulate exact

algorithms for them. We do not know ourselves how our brain does
this.

I To solve such problems, one can use machine learning: attempts to
build programs which learn to make correct decisions on some
training material and improve with experience;

I One of popular machine learning approaches for language
modeling – artificial neural networks.

11



Predictive distributional models: Word2Vec revolution

Machine learning
I Some problems are so complex that we can’t formulate exact

algorithms for them. We do not know ourselves how our brain does
this.

I To solve such problems, one can use machine learning: attempts to
build programs which learn to make correct decisions on some
training material and improve with experience;

I One of popular machine learning approaches for language
modeling – artificial neural networks.

11



Predictive distributional models: Word2Vec revolution

Machine learning
I Some problems are so complex that we can’t formulate exact

algorithms for them. We do not know ourselves how our brain does
this.

I To solve such problems, one can use machine learning: attempts to
build programs which learn to make correct decisions on some
training material and improve with experience;

I One of popular machine learning approaches for language
modeling – artificial neural networks.

11



Predictive distributional models: Word2Vec revolution

I Machine learning based distributional models are often called
predict models.

I In the count models we count co-occurrence frequencies and use
them as word vectors; in the predict models it is vice versa:

I We try to find (to learn) for each word such a vector/embedding that
it is maximally similar to the vectors of its paradigmatic neighbors
and minimally similar to the vectors of the words which in the
training corpus are not second-order neighbors of the given word.

When using artificial neural networks, such learned vectors are called
neural embeddings.
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Predictive distributional models: Word2Vec revolution

How brain works

There are 1011 neurons in our brain, with 104 connections each.
Neurons receive differently expressed signals from other neurons.
Neuron reacts depending on the input.

Artificial neural networks try to imitate this process.
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Predictive distributional models: Word2Vec revolution

Imitating the brain with artificial neural networks

There is evidence that concepts are stored in brain as neural activation
patterns.
Very similar to vector representations! Meaning is a set of distributed
‘semantic components’; each of them can be more or less activated
(expressed).

Concepts are represented by vectors of n dimensions (aka neurons),
and each neuron is responsible for many concepts or rough ‘semantic
components’.
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Predictive distributional models: Word2Vec revolution

In 2013, Google’s Tomas Mikolov et al. published
a paper called ‘Efficient Estimation of Word
Representations in Vector Space’; they also
made available the source code of word2vec tool,
implementing their algorithms, and a distributional
model trained on large Google News corpus.

I [Mikolov et al., 2013]
I https://code.google.com/p/word2vec/

Mikolov modified already existing algorithms
(especially from [Bengio et al., 2003] and work by
R. Collobert), and explicitly made learning good
embeddings the final aim of the model training.
word2vec turned out to be very fast and efficient.
NB: it actually features two different algorithms:
Continuous Bag-of-Words (CBOW) and
Continuous Skipgram.

15
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Predictive distributional models: Word2Vec revolution

First, each word in the vocabulary receives a random initial vector of a
pre-defined size. What happens next?

Learning good vectors
During the training, we move through the training corpus with a sliding
window. Each instance (word in running text) is a prediction problem:
the objective is to predict the current word with the help of its contexts
(or vice versa).
The outcome of the prediction determines whether we adjust the
current word vector and in what direction. Gradually, vectors converge
to (hopefully) optimal values.

It is important that prediction here is not an aim in itself: it is just a
proxy to learn vector representations good for other downstream tasks.
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Predictive distributional models: Word2Vec revolution

I Continuous Bag-of-words (CBOW) and Continuous Skip-gram
(skip-gram) are conceptually similar but differ in important details;

I Both shown to outperform traditional count DSMs in various
semantic tasks for English [Baroni et al., 2014]

At training time, CBOW learns to predict current word based on its
context, while Skip-Gram learns to predict context based on the current
word.
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Predictive distributional models: Word2Vec revolution

Continuous Bag-of-Words and Continuous Skip-Gram: two algorithms
in the word2vec paper
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Predictive distributional models: Word2Vec revolution

It is clear that none of these algorithms is actually deep learning.
Neural network is very simple, with a single hidden/projection layer.

The training objective is to maximize the probability of observing the
correct output word(s) wt given the context word(s) cw1...cwj , with
regard to their current embeddings (sets of neural weights).
Cost function C for CBOW is the negative log probability
(cross-entropy) of the correct answer:

C = −log(p(wt |cw1...cwj)) (2)

or for SkipGram

C = −
j∑

i=1

log(p(cwi |wt)) (3)

and the learning itself is implemented with stochastic gradient descent
and (optionally) adaptive learning rate.

19



Predictive distributional models: Word2Vec revolution

It is clear that none of these algorithms is actually deep learning.
Neural network is very simple, with a single hidden/projection layer.
The training objective is to maximize the probability of observing the
correct output word(s) wt given the context word(s) cw1...cwj , with
regard to their current embeddings (sets of neural weights).

Cost function C for CBOW is the negative log probability
(cross-entropy) of the correct answer:

C = −log(p(wt |cw1...cwj)) (2)

or for SkipGram

C = −
j∑

i=1

log(p(cwi |wt)) (3)

and the learning itself is implemented with stochastic gradient descent
and (optionally) adaptive learning rate.

19



Predictive distributional models: Word2Vec revolution

It is clear that none of these algorithms is actually deep learning.
Neural network is very simple, with a single hidden/projection layer.
The training objective is to maximize the probability of observing the
correct output word(s) wt given the context word(s) cw1...cwj , with
regard to their current embeddings (sets of neural weights).
Cost function C for CBOW is the negative log probability
(cross-entropy) of the correct answer:

C = −log(p(wt |cw1...cwj)) (2)

or for SkipGram

C = −
j∑

i=1

log(p(cwi |wt)) (3)

and the learning itself is implemented with stochastic gradient descent
and (optionally) adaptive learning rate.

19



Predictive distributional models: Word2Vec revolution

It is clear that none of these algorithms is actually deep learning.
Neural network is very simple, with a single hidden/projection layer.
The training objective is to maximize the probability of observing the
correct output word(s) wt given the context word(s) cw1...cwj , with
regard to their current embeddings (sets of neural weights).
Cost function C for CBOW is the negative log probability
(cross-entropy) of the correct answer:

C = −log(p(wt |cw1...cwj)) (2)

or for SkipGram

C = −
j∑

i=1

log(p(cwi |wt)) (3)

and the learning itself is implemented with stochastic gradient descent
and (optionally) adaptive learning rate.

19



Predictive distributional models: Word2Vec revolution

It is clear that none of these algorithms is actually deep learning.
Neural network is very simple, with a single hidden/projection layer.
The training objective is to maximize the probability of observing the
correct output word(s) wt given the context word(s) cw1...cwj , with
regard to their current embeddings (sets of neural weights).
Cost function C for CBOW is the negative log probability
(cross-entropy) of the correct answer:

C = −log(p(wt |cw1...cwj)) (2)

or for SkipGram

C = −
j∑

i=1

log(p(cwi |wt)) (3)

and the learning itself is implemented with stochastic gradient descent
and (optionally) adaptive learning rate.

19



Predictive distributional models: Word2Vec revolution

Prediction for each training instance is basically:
I CBOW: average vector for all context words. We check whether

the current word vector is the closest to it among all vocabulary
words.

I SkipGram: current word vector. We check whether each of
context words vector is the closest to it among all vocabulary words.

Reminder: this ‘closeness’ is calculated with the help of cosine
similarity and then turned into probabilities using softmax.
During the training, we are updating 2 weight matrices: of context
vectors (from the input to the hidden layer) and of output vectors (from
hidden layer to the output). As a rule, they share the same lexicon, and
only output vectors are used in practical tasks.
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Predictive distributional models: Word2Vec revolution

CBOW and SkipGram training algorithms

‘the vector of a word w is “dragged” back-and-forth by the vectors of
w’s co-occurring words, as if there are physical strings between w and
its neighbors...like gravity, or force-directed graph layout.’ [Rong, 2014]

Useful demo of word2vec algorithms: https://ronxin.github.io/wevi/
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Predictive distributional models: Word2Vec revolution

Selection of learning material

At each training instance, to find out whether the prediction is true, we
have to iterate over all words in the vocabulary and calculate their dot
products with the input word(s).

This is not feasible. That’s why word2vec uses one of these two smart
tricks:
1. Hierarchical softmax;
2. Negative samping.
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Predictive distributional models: Word2Vec revolution

Hierarchical softmax

Calculate joint probability of all items in the binary tree path to the true
word. This will be the probability of choosing the right word.
Now for vocabulary size V , the complexity of each prediction is
O(log(V )) instead of O(V ).
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Predictive distributional models: Word2Vec revolution

Negative sampling

The idea of negative sampling is even simpler:

I do not iterate over all words in the vocabulary;
I take your true word and sample 5...15 random ‘noise’ words from

the vocabulary;
I these words serve as negative examples.

Calculating probabilities for 15 words is of course much faster than
iterating over all the vocabulary
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Predictive distributional models: Word2Vec revolution

Things are complicated

Model performance hugely depends on training settings
(hyperparameters):
1. CBOW or skip-gram algorithm. Needs further research; SkipGram

is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 mln tokens).

2. Vector size: how many distributed semantic features (dimensions)
we use to describe a word. The more is not always the better.

3. Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

4. Frequency threshold: useful to get rid of long noisy lexical tail;
5. Selection of learning material: hierarchical softmax or negative

sampling (used more often);
6. Number of iterations on our training data, etc...
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Predictive distributional models: Word2Vec revolution

Model performance in semantic relatedness task depending on context
width and vector size.
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The followers: GloVe and the others

In the next two years after 2013 Mikolov’s paper, there was a lot of
follow-up research:
I Christopher Mannning and other folks at Stanford released GloVe –

a slightly different version of the same approach
[Pennington et al., 2014];

I Omer Levy and Yoav Goldberg from Bar-Ilan University showed that
SkipGram implicitly factorizes word-context matrix of PMI
coefficients [Levy and Goldberg, 2014];

I The same people showed that much of amazing performance of
SkipGram is due to the choice of hyperparameters, but it is still very
robust and computationally efficient [Levy et al., 2015];

I Le and Mikolov proposed Paragraph Vector: an algorithm to learn
distributed representations not only for words but also for
paragraphs or documents [Le and Mikolov, 2014];

I These approaches were implemented in third-party open-source
software, for example, Gensim or TensorFlow.
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The followers: GloVe and the others

GlobalVectors: a global log-bilinear regression model for unsupervised
learning of word embeddings
I GloVe is an attempt to combine the global matrix factorization

(count) models and local context window (predict) models.

I It employs on global co-occurrence counts by factorizing the log of
co-occurrence matrix

I Non-zero elements are stochastically sampled from the matrix, and
the model iteratively trained on them.

I The objective is to learn word vectors such that their dot product
equals the logarithm of the words’ probability of co-occurrence.

I Code and pre-trained embeddings available at
http://nlp.stanford.edu/projects/glove/.
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The followers: GloVe and the others

Questions?

INF5820
Distributional Semantics: Extracting Meaning from Data

Lecture 2
Distributional and distributed: inner mechanics of modern word

embedding models

Homework: play with
http://ltr.uio.no/semvec,

install Gensim library for Python (http://radimrehurek.com/gensim/).
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In the next week

Practical aspects of training and using distributional models
I Models hyperparameters;
I Models evaluation;
I Models’ formats;
I Off-the-shelf tools to train and use models.
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