
INF5820
Distributional Semantics: Extracting Meaning from Data

Lecture 3
Practical aspects of training and using

distributional models

Andrey Kutuzov
andreku@ifi.uio.no

9 November 2016

1



Contents

1 Brief recap

2 Models evaluation

3 Off-the-shelf tools to train and use models

4 Model formats

5 Hyperparameters influence

6 In the next week

1



Brief recap

What we are going to cover today
I Models evaluation;
I Off-the-shelf tools to train and use models;
I Models’ formats;
I Models hyperparameters.

2



Contents

1 Brief recap

2 Models evaluation

3 Off-the-shelf tools to train and use models

4 Model formats

5 Hyperparameters influence

6 In the next week

2



Models evaluation

How do we evaluate trained models? Subject to many discussions!
The topic of a special workshop at ACL2016:
https://sites.google.com/site/repevalacl16/

I Semantic relatedness (what is the association degree?):
I RG dataset [Rubenstein and Goodenough, 1965]
I WordSim 353 dataset [Finkelstein et al., 2001]
I MEN dataset [Bruni et al., 2014]
I SimLex-999 dataset [Hill et al., 2015]

I Synonym detection (what is most similar?):
I TOEFL dataset (1997)

3

https://sites.google.com/site/repevalacl16/


Models evaluation

How do we evaluate trained models? Subject to many discussions!
The topic of a special workshop at ACL2016:
https://sites.google.com/site/repevalacl16/
I Semantic relatedness (what is the association degree?):

I RG dataset [Rubenstein and Goodenough, 1965]

I WordSim 353 dataset [Finkelstein et al., 2001]
I MEN dataset [Bruni et al., 2014]
I SimLex-999 dataset [Hill et al., 2015]

I Synonym detection (what is most similar?):
I TOEFL dataset (1997)

3

https://sites.google.com/site/repevalacl16/


Models evaluation

How do we evaluate trained models? Subject to many discussions!
The topic of a special workshop at ACL2016:
https://sites.google.com/site/repevalacl16/
I Semantic relatedness (what is the association degree?):

I RG dataset [Rubenstein and Goodenough, 1965]
I WordSim 353 dataset [Finkelstein et al., 2001]

I MEN dataset [Bruni et al., 2014]
I SimLex-999 dataset [Hill et al., 2015]

I Synonym detection (what is most similar?):
I TOEFL dataset (1997)

3

https://sites.google.com/site/repevalacl16/


Models evaluation

How do we evaluate trained models? Subject to many discussions!
The topic of a special workshop at ACL2016:
https://sites.google.com/site/repevalacl16/
I Semantic relatedness (what is the association degree?):

I RG dataset [Rubenstein and Goodenough, 1965]
I WordSim 353 dataset [Finkelstein et al., 2001]
I MEN dataset [Bruni et al., 2014]

I SimLex-999 dataset [Hill et al., 2015]
I Synonym detection (what is most similar?):

I TOEFL dataset (1997)

3

https://sites.google.com/site/repevalacl16/


Models evaluation

How do we evaluate trained models? Subject to many discussions!
The topic of a special workshop at ACL2016:
https://sites.google.com/site/repevalacl16/
I Semantic relatedness (what is the association degree?):

I RG dataset [Rubenstein and Goodenough, 1965]
I WordSim 353 dataset [Finkelstein et al., 2001]
I MEN dataset [Bruni et al., 2014]
I SimLex-999 dataset [Hill et al., 2015]

I Synonym detection (what is most similar?):
I TOEFL dataset (1997)

3

https://sites.google.com/site/repevalacl16/


Models evaluation

How do we evaluate trained models? Subject to many discussions!
The topic of a special workshop at ACL2016:
https://sites.google.com/site/repevalacl16/
I Semantic relatedness (what is the association degree?):

I RG dataset [Rubenstein and Goodenough, 1965]
I WordSim 353 dataset [Finkelstein et al., 2001]
I MEN dataset [Bruni et al., 2014]
I SimLex-999 dataset [Hill et al., 2015]

I Synonym detection (what is most similar?):
I TOEFL dataset (1997)

3

https://sites.google.com/site/repevalacl16/


Models evaluation

I Concept categorization (what groups with what?):
I ESSLI 2008 dataset
I Battig dataset (2010)

I Analogical inference (A is to B as C is to ?):
I Google Analogy dataset [Le and Mikolov, 2014]
I Many domain-specific datasets inspired by Google Analogy

I Correlation with manually crafted linguistic features:
I QVEC uses words affiliations with Wordnet synsets

[Tsvetkov et al., 2015]

4



Models evaluation

I Concept categorization (what groups with what?):
I ESSLI 2008 dataset
I Battig dataset (2010)

I Analogical inference (A is to B as C is to ?):
I Google Analogy dataset [Le and Mikolov, 2014]
I Many domain-specific datasets inspired by Google Analogy

I Correlation with manually crafted linguistic features:
I QVEC uses words affiliations with Wordnet synsets

[Tsvetkov et al., 2015]

4



Models evaluation

I Concept categorization (what groups with what?):
I ESSLI 2008 dataset
I Battig dataset (2010)

I Analogical inference (A is to B as C is to ?):
I Google Analogy dataset [Le and Mikolov, 2014]
I Many domain-specific datasets inspired by Google Analogy

I Correlation with manually crafted linguistic features:
I QVEC uses words affiliations with Wordnet synsets

[Tsvetkov et al., 2015]

4



Contents

1 Brief recap

2 Models evaluation

3 Off-the-shelf tools to train and use models

4 Model formats

5 Hyperparameters influence

6 In the next week

4



Off-the-shelf tools to train and use models

Main frameworks and toolkits
1. Dissect [Dinu et al., 2013]

(http://clic.cimec.unitn.it/composes/toolkit/);

2. word2vec original C code [Le and Mikolov, 2014]
(https://word2vec.googlecode.com/svn/trunk/)

3. Gensim framework for Python, including word2vec implementations
(http://radimrehurek.com/gensim/);

4. word2vec implementations in Google’s TensorFlow
(https://www.tensorflow.org/tutorials/word2vec);

5. GloVe reference implementation [Pennington et al., 2014]
(http://nlp.stanford.edu/projects/glove/).

5

http://clic.cimec.unitn.it/composes/toolkit/
https://word2vec.googlecode.com/svn/trunk/
http://radimrehurek.com/gensim/
https://www.tensorflow.org/tutorials/word2vec
http://nlp.stanford.edu/projects/glove/


Off-the-shelf tools to train and use models

Main frameworks and toolkits
1. Dissect [Dinu et al., 2013]

(http://clic.cimec.unitn.it/composes/toolkit/);
2. word2vec original C code [Le and Mikolov, 2014]

(https://word2vec.googlecode.com/svn/trunk/)

3. Gensim framework for Python, including word2vec implementations
(http://radimrehurek.com/gensim/);

4. word2vec implementations in Google’s TensorFlow
(https://www.tensorflow.org/tutorials/word2vec);

5. GloVe reference implementation [Pennington et al., 2014]
(http://nlp.stanford.edu/projects/glove/).

5

http://clic.cimec.unitn.it/composes/toolkit/
https://word2vec.googlecode.com/svn/trunk/
http://radimrehurek.com/gensim/
https://www.tensorflow.org/tutorials/word2vec
http://nlp.stanford.edu/projects/glove/


Off-the-shelf tools to train and use models

Main frameworks and toolkits
1. Dissect [Dinu et al., 2013]

(http://clic.cimec.unitn.it/composes/toolkit/);
2. word2vec original C code [Le and Mikolov, 2014]

(https://word2vec.googlecode.com/svn/trunk/)
3. Gensim framework for Python, including word2vec implementations

(http://radimrehurek.com/gensim/);

4. word2vec implementations in Google’s TensorFlow
(https://www.tensorflow.org/tutorials/word2vec);

5. GloVe reference implementation [Pennington et al., 2014]
(http://nlp.stanford.edu/projects/glove/).

5

http://clic.cimec.unitn.it/composes/toolkit/
https://word2vec.googlecode.com/svn/trunk/
http://radimrehurek.com/gensim/
https://www.tensorflow.org/tutorials/word2vec
http://nlp.stanford.edu/projects/glove/


Off-the-shelf tools to train and use models

Main frameworks and toolkits
1. Dissect [Dinu et al., 2013]

(http://clic.cimec.unitn.it/composes/toolkit/);
2. word2vec original C code [Le and Mikolov, 2014]

(https://word2vec.googlecode.com/svn/trunk/)
3. Gensim framework for Python, including word2vec implementations

(http://radimrehurek.com/gensim/);
4. word2vec implementations in Google’s TensorFlow

(https://www.tensorflow.org/tutorials/word2vec);

5. GloVe reference implementation [Pennington et al., 2014]
(http://nlp.stanford.edu/projects/glove/).

5

http://clic.cimec.unitn.it/composes/toolkit/
https://word2vec.googlecode.com/svn/trunk/
http://radimrehurek.com/gensim/
https://www.tensorflow.org/tutorials/word2vec
http://nlp.stanford.edu/projects/glove/


Off-the-shelf tools to train and use models

Main frameworks and toolkits
1. Dissect [Dinu et al., 2013]

(http://clic.cimec.unitn.it/composes/toolkit/);
2. word2vec original C code [Le and Mikolov, 2014]

(https://word2vec.googlecode.com/svn/trunk/)
3. Gensim framework for Python, including word2vec implementations

(http://radimrehurek.com/gensim/);
4. word2vec implementations in Google’s TensorFlow

(https://www.tensorflow.org/tutorials/word2vec);
5. GloVe reference implementation [Pennington et al., 2014]

(http://nlp.stanford.edu/projects/glove/).

5

http://clic.cimec.unitn.it/composes/toolkit/
https://word2vec.googlecode.com/svn/trunk/
http://radimrehurek.com/gensim/
https://www.tensorflow.org/tutorials/word2vec
http://nlp.stanford.edu/projects/glove/


Contents

1 Brief recap

2 Models evaluation

3 Off-the-shelf tools to train and use models

4 Model formats

5 Hyperparameters influence

6 In the next week

5



Model formats

Models can come in several formats:
1. Simple text format: words and sequences of values representing

their vectors, one word per line; first line gives information on the
number of words in the model and vector size.

2. The same in the binary form.
3. Gensim binary format: uses NumPy matrices saved via Python

pickles; stores a lot of additional information (input vectors, training
algorithm, word frequency, etc).

Gensim works with all of these formats.

6



Model formats

Models can come in several formats:
1. Simple text format: words and sequences of values representing

their vectors, one word per line; first line gives information on the
number of words in the model and vector size.

2. The same in the binary form.

3. Gensim binary format: uses NumPy matrices saved via Python
pickles; stores a lot of additional information (input vectors, training
algorithm, word frequency, etc).

Gensim works with all of these formats.

6



Model formats

Models can come in several formats:
1. Simple text format: words and sequences of values representing

their vectors, one word per line; first line gives information on the
number of words in the model and vector size.

2. The same in the binary form.
3. Gensim binary format: uses NumPy matrices saved via Python

pickles; stores a lot of additional information (input vectors, training
algorithm, word frequency, etc).

Gensim works with all of these formats.

6



Contents

1 Brief recap

2 Models evaluation

3 Off-the-shelf tools to train and use models

4 Model formats

5 Hyperparameters influence

6 In the next week

6



Hyperparameters influence

Things are complicated

Model performance hugely depends on training settings
(hyperparameters):
1. CBOW or skip-gram algorithm. Needs further research; SkipGram

is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 mln tokens).

2. Vector size: how many distributed semantic features (dimensions)
we use to describe a word. The more is not always the better.

3. Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

4. Frequency threshold: useful to get rid of long noisy lexical tail;
5. Selection of learning material: hierarchical softmax or negative

sampling (used more often);
6. Number of iterations on our training data, etc...

7



Hyperparameters influence

Things are complicated

Model performance hugely depends on training settings
(hyperparameters):

1. CBOW or skip-gram algorithm. Needs further research; SkipGram
is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 mln tokens).

2. Vector size: how many distributed semantic features (dimensions)
we use to describe a word. The more is not always the better.

3. Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

4. Frequency threshold: useful to get rid of long noisy lexical tail;
5. Selection of learning material: hierarchical softmax or negative

sampling (used more often);
6. Number of iterations on our training data, etc...

7



Hyperparameters influence

Things are complicated

Model performance hugely depends on training settings
(hyperparameters):
1. CBOW or skip-gram algorithm. Needs further research; SkipGram

is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 mln tokens).

2. Vector size: how many distributed semantic features (dimensions)
we use to describe a word. The more is not always the better.

3. Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

4. Frequency threshold: useful to get rid of long noisy lexical tail;
5. Selection of learning material: hierarchical softmax or negative

sampling (used more often);
6. Number of iterations on our training data, etc...

7



Hyperparameters influence

Things are complicated

Model performance hugely depends on training settings
(hyperparameters):
1. CBOW or skip-gram algorithm. Needs further research; SkipGram

is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 mln tokens).

2. Vector size: how many distributed semantic features (dimensions)
we use to describe a word. The more is not always the better.

3. Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

4. Frequency threshold: useful to get rid of long noisy lexical tail;
5. Selection of learning material: hierarchical softmax or negative

sampling (used more often);
6. Number of iterations on our training data, etc...

7



Hyperparameters influence

Things are complicated

Model performance hugely depends on training settings
(hyperparameters):
1. CBOW or skip-gram algorithm. Needs further research; SkipGram

is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 mln tokens).

2. Vector size: how many distributed semantic features (dimensions)
we use to describe a word. The more is not always the better.

3. Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

4. Frequency threshold: useful to get rid of long noisy lexical tail;
5. Selection of learning material: hierarchical softmax or negative

sampling (used more often);
6. Number of iterations on our training data, etc...

7



Hyperparameters influence

Things are complicated

Model performance hugely depends on training settings
(hyperparameters):
1. CBOW or skip-gram algorithm. Needs further research; SkipGram

is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 mln tokens).

2. Vector size: how many distributed semantic features (dimensions)
we use to describe a word. The more is not always the better.

3. Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

4. Frequency threshold: useful to get rid of long noisy lexical tail;

5. Selection of learning material: hierarchical softmax or negative
sampling (used more often);

6. Number of iterations on our training data, etc...

7



Hyperparameters influence

Things are complicated

Model performance hugely depends on training settings
(hyperparameters):
1. CBOW or skip-gram algorithm. Needs further research; SkipGram

is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 mln tokens).

2. Vector size: how many distributed semantic features (dimensions)
we use to describe a word. The more is not always the better.

3. Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

4. Frequency threshold: useful to get rid of long noisy lexical tail;
5. Selection of learning material: hierarchical softmax or negative

sampling (used more often);

6. Number of iterations on our training data, etc...

7



Hyperparameters influence

Things are complicated

Model performance hugely depends on training settings
(hyperparameters):
1. CBOW or skip-gram algorithm. Needs further research; SkipGram

is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 mln tokens).

2. Vector size: how many distributed semantic features (dimensions)
we use to describe a word. The more is not always the better.

3. Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

4. Frequency threshold: useful to get rid of long noisy lexical tail;
5. Selection of learning material: hierarchical softmax or negative

sampling (used more often);
6. Number of iterations on our training data, etc...

7



Hyperparameters influence

Model performance in semantic relatedness task depending on context
width and vector size.

8



Hyperparameters influence

A bunch of observations
I Wikipedia is not the best training corpus: fluctuates wildly

depending on hyperparameters. Perhaps, too specific language.

I Normalize you data: lowercase, lemmatize, merge multi-word
entities.

I It helps to augment words with PoS tags before training
(‘boot_NOUN’, ‘boot_VERB’). As a result, your model becomes
aware of morphological ambiguity.

I Remove your stop words yourself. Statistical downsampling
implemented in word2vec algorithms can easily deprive you of
valuable text data.

9



Hyperparameters influence

A bunch of observations
I Wikipedia is not the best training corpus: fluctuates wildly

depending on hyperparameters. Perhaps, too specific language.
I Normalize you data: lowercase, lemmatize, merge multi-word

entities.

I It helps to augment words with PoS tags before training
(‘boot_NOUN’, ‘boot_VERB’). As a result, your model becomes
aware of morphological ambiguity.

I Remove your stop words yourself. Statistical downsampling
implemented in word2vec algorithms can easily deprive you of
valuable text data.

9



Hyperparameters influence

A bunch of observations
I Wikipedia is not the best training corpus: fluctuates wildly

depending on hyperparameters. Perhaps, too specific language.
I Normalize you data: lowercase, lemmatize, merge multi-word

entities.
I It helps to augment words with PoS tags before training

(‘boot_NOUN’, ‘boot_VERB’). As a result, your model becomes
aware of morphological ambiguity.

I Remove your stop words yourself. Statistical downsampling
implemented in word2vec algorithms can easily deprive you of
valuable text data.

9



Hyperparameters influence

A bunch of observations
I Wikipedia is not the best training corpus: fluctuates wildly

depending on hyperparameters. Perhaps, too specific language.
I Normalize you data: lowercase, lemmatize, merge multi-word

entities.
I It helps to augment words with PoS tags before training

(‘boot_NOUN’, ‘boot_VERB’). As a result, your model becomes
aware of morphological ambiguity.

I Remove your stop words yourself. Statistical downsampling
implemented in word2vec algorithms can easily deprive you of
valuable text data.

9



Hyperparameters influence

Questions?

INF5820
Distributional Semantics: Extracting Meaning from Data

Lecture 3
Practical aspects of training and using distributional models

Homework: obligatory assignment 3.

10



Contents

1 Brief recap

2 Models evaluation

3 Off-the-shelf tools to train and use models

4 Model formats

5 Hyperparameters influence

6 In the next week

10



In the next week

Beyond words: distributional representations of texts
I Representing phrases, sentences and documents;
I semantic fingerprints;
I paragraph vector (doc2vec);
I deep inverse regression
I etc.

11



References I

Bruni, E., Tran, N.-K., and Baroni, M. (2014).
Multimodal distributional semantics.
J. Artif. Intell. Res.(JAIR), 49(1-47).

Dinu, G., Pham, T. N., and Baroni, M. (2013).
Dissect - distributional semantics composition toolkit.
In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pages 31–36.
Association for Computational Linguistics.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z.,
Wolfman, G., and Ruppin, E. (2001).
Placing search in context: The concept revisited.
In Proceedings of the 10th international conference on World Wide
Web, pages 406–414. ACM.

12



References II

Hill, F., Reichart, R., and Korhonen, A. (2015).
Simlex-999: Evaluating semantic models with (genuine) similarity
estimation.
Computational Linguistics, 41(4).

Le, Q. V. and Mikolov, T. (2014).
Distributed representations of sentences and documents.
In ICML, volume 14, pages 1188–1196.

Pennington, J., Socher, R., and Manning, C. D. (2014).
GloVe: Global vectors for word representation.
In Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543.

Rubenstein, H. and Goodenough, J. B. (1965).
Contextual correlates of synonymy.
Communications of the ACM, 8(10):627–633.

13



References III

Tsvetkov, Y., Faruqui, M., Ling, W., Lample, G., and Dyer, C.
(2015).
Evaluation of word vector representations by subspace alignment.
In Proc. of EMNLP.

14


	Brief recap
	Models evaluation
	Off-the-shelf tools to train and use models
	Model formats
	Hyperparameters influence
	In the next week

