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Brief recap

What we are going to cover today
I Models evaluation;
I Off-the-shelf tools to train and use models;
I Models’ formats;
I Models hyperparameters.
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Models evaluation

How do we evaluate trained models? Subject to many discussions!
The topic of a special workshop at ACL2016:
https://sites.google.com/site/repevalacl16/

I Semantic relatedness (what is the association degree?):
I RG dataset [Rubenstein and Goodenough, 1965]
I WordSim 353 dataset [Finkelstein et al., 2001]
I MEN dataset [Bruni et al., 2014]
I SimLex-999 dataset [Hill et al., 2015]

I Synonym detection (what is most similar?):
I TOEFL dataset (1997)
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Models evaluation

I Concept categorization (what groups with what?):
I ESSLI 2008 dataset
I Battig dataset (2010)

I Analogical inference (A is to B as C is to ?):
I Google Analogy dataset [Le and Mikolov, 2014]
I Many domain-specific datasets inspired by Google Analogy

I Correlation with manually crafted linguistic features:
I QVEC uses words affiliations with Wordnet synsets

[Tsvetkov et al., 2015]
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Off-the-shelf tools to train and use models

Main frameworks and toolkits
1. Dissect [Dinu et al., 2013]

(http://clic.cimec.unitn.it/composes/toolkit/);

2. word2vec original C code [Le and Mikolov, 2014]
(https://word2vec.googlecode.com/svn/trunk/)

3. Gensim framework for Python, including word2vec implementations
(http://radimrehurek.com/gensim/);

4. word2vec implementations in Google’s TensorFlow
(https://www.tensorflow.org/tutorials/word2vec);

5. GloVe reference implementation [Pennington et al., 2014]
(http://nlp.stanford.edu/projects/glove/).
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Model formats

Models can come in several formats:
1. Simple text format: words and sequences of values representing

their vectors, one word per line; first line gives information on the
number of words in the model and vector size.

2. The same in the binary form.
3. Gensim binary format: uses NumPy matrices saved via Python

pickles; stores a lot of additional information (input vectors, training
algorithm, word frequency, etc).

Gensim works with all of these formats.
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Hyperparameters influence

Things are complicated

Model performance hugely depends on training settings
(hyperparameters):
1. CBOW or skip-gram algorithm. Needs further research; SkipGram

is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 mln tokens).

2. Vector size: how many distributed semantic features (dimensions)
we use to describe a word. The more is not always the better.

3. Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

4. Frequency threshold: useful to get rid of long noisy lexical tail;
5. Selection of learning material: hierarchical softmax or negative

sampling (used more often);
6. Number of iterations on our training data, etc...
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Hyperparameters influence

Model performance in semantic relatedness task depending on context
width and vector size.
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Hyperparameters influence

A bunch of observations
I Wikipedia is not the best training corpus: fluctuates wildly

depending on hyperparameters. Perhaps, too specific language.

I Normalize you data: lowercase, lemmatize, merge multi-word
entities.

I It helps to augment words with PoS tags before training
(‘boot_NOUN’, ‘boot_VERB’). As a result, your model becomes
aware of morphological ambiguity.

I Remove your stop words yourself. Statistical downsampling
implemented in word2vec algorithms can easily deprive you of
valuable text data.
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Hyperparameters influence

Questions?

INF5820
Distributional Semantics: Extracting Meaning from Data

Lecture 3
Practical aspects of training and using distributional models

Homework: obligatory assignment 3.
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In the next week

Beyond words: distributional representations of texts
I Representing phrases, sentences and documents;
I semantic fingerprints;
I paragraph vector (doc2vec);
I deep inverse regression
I etc.
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