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Brief recap

What we are going to cover today
I Problem of document classification;
I Traditional bag-of-words approach;
I Compositional distributed approaches;
I ‘Proper’ distributional approaches (document vectors).
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Problem description

I Distributional approaches allow to extract semantics from unlabeled
data at word level.

I But we also need to represent variable-length documents!
I for classification,
I for clustering,
I for information retrieval (including web search).
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Problem description

I Can we detect semantically similar texts in the same way as we
detect similar words?

I Yes we can!
I Nothing prevents us from representing sentences, paragraphs or

whole documents (further we use the term ‘document ’ for all these
things) as dense vectors.

I After the documents are represented as vectors, classification,
clustering or other data processing tasks become trivial.

I Unsupervised learning of distributed representations for documents
is the topic of this lecture.

Note: this lecture does not cover sequence-to-sequence sentence
modeling approaches based on RNNs (LSTM, GRU, etc). A good
example of those is the Skip-Thought algorithm [Kiros et al., 2015].
We are concerned with comparatively simple algorithms conceptually
similar to prediction-based distributional models for words.
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Can we do without semantics?

Bag-of-words with TF-IDF

A very strong baseline approach for document representation, hard to
beat by modern methods:

1. Extract vocabulary V of all words (terms) in the training collection
consisting of N documents;

2. For each term, calculate its document frequency: in how many
documents it occurs (df );

3. Represent each document as a sparse vector of frequencies for all
terms from V contained in it (tf );

4. For each value, calculate the weighted frequency wf using term
frequency / inverted document frequency (TF-IDF):

I wf = (1 + log10tf )× log10(
N
df )

5. Use these weighted document vectors in your downstream tasks.
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Can we do without semantics?

Bag-of-words problems

Unfortunately, simple bag-of-word does not take into account semantic
relationships between linguistic entities.
No way to detect semantic similarity between documents which do not
share words:

I California saw mass protests after the elections.
I Many Americans were anxious about the elected president.

It means we need more sophisticated semantically-aware distributed
methods, like neural embeddings.
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Distributed models: composing from word vectors

I Document meaning is composed of individual word meanings.
I Need to combine continuous word vectors into continuous

document vectors.
I It is called a composition function.

Semantic fingerprints

I One of the simplest composition functions: an average vector ~S
over vectors of all words w0...n in the document.

~S =
1
n
×

n∑
i=0

~wn (1)

I We don’t care about syntax and word order.
I If we already have a good word embedding model, this bottom-up

approach is strikingly efficient and usually beats bag-of-words.
I Let’s call it a ‘semantic fingerprint’ of the document.
I It is very important to remove stop words beforehand! 7

Distributed models: composing from word vectors

I You even don’t have to average. Summing vectors is enough:
cosine is about angles, not magnitudes.

I However, averaging makes difference in case of other distance
metrics (Euclidean distance, etc).

I Also helps to keep things tidy and normalized.
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Distributed models: composing from word vectors

Composition functions
I One can experiment with different combinations of word vectors, not

only averaging:
I Concatenation
I Multiplication
I Weighted sum
I etc...

I Can introduce word order knowledge by using n-grams instead of
words.

I See [Mitchell and Lapata, 2010] for extensive description and
evaluation of various compositional models.
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Distributed models: composing from word vectors

Advantages of semantic fingerprints
I Semantic fingerprints work fast and reuse already trained models.
I Generalized document representations do not depend on particular

words.
I They take advantage of ‘semantic features’ learned during the

model training.
I Topically connected words collectively increase or decrease

expression of the corresponding semantic components.
I Thus, topical words automatically become more important than

noise words.

See more in [Kutuzov et al., 2016].
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Distributed models: composing from word vectors

Deep inverse regression
I Another approach using the existing word vectors is proposed in

[Taddy, 2015]:
I Classify documents by inverting distributional models:

I Prediction-based models contain information on typical neighbors for
all words in their output weight matrix;

I Thus, we know how likely it is for two words to occur together;
I It is then possible to detect the likelihood of a sentence given a model;
I But it means we can employ Bayes rule to calculate the inverse of

this: the likelihood of the model given a sentence;
I For example, we have models trained on positive and negative

reviews;
I For any sentence we can calculate the probability of it being positive

or negative.
I Deep inverse regression is implemented in Gensim (for hierarchical

softmax models only);
I drawback: you need separate models for each of your classes. 11

Distributed models: composing from word vectors

But...
However, for some problems such compositional approaches are not
enough and we need to generate real document embeddings.
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Distributed models: training document vectors

Many questions
I Should we treat the document as a single target unit surrounded by

its counterparts?
I Usually not feasible: sentences are rarely repeated, let alone

documents.
I Or should we take into account the composing words, but go

beyond simple composition functions?
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Distributed models: training document vectors

Paragraph Vector
I [Le and Mikolov, 2014] proposed Paragraph Vector;
I primarily designed for learning sentence vectors;
I the algorithm takes as an input sentences/documents tagged with

(possibly unique) identifiers;
I learns distributed representations for the sentences, such that

similar sentences have similar vectors;
I so each sentence is represented with an identifier and a vector, like

a word;
I these vectors serve as sort of document memories or document

topics.

Not much evaluated (however, see [Hill et al., 2016] and
[Lau and Baldwin, 2016])
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Distributed models: training document vectors

Paragraph Vector (aka doc2vec)
I implemented in Gensim under the name doc2vec;
I Distributed memory (DM) and Distributed Bag-of-words (DBOW)

methods;
I PV-DM:

I learn word embeddings in a usual way (shared by all documents);
I randomly initialize document vectors;
I use document vectors together with word vectors to predict the

neighboring words within a pre-defined window;
I minimize error;
I the trained model can inference a vector for any new document (the

model remains intact).
I PV-DBOW:

I don’t use sliding window at all;
I just predict all words in the current document using its vector.

Contradicting reports on which method is better.
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Distributed models: training document vectors

Paragraph Vector - Distributed memory (PV-DM)

16

Distributed models: training document vectors

Paragraph Vector - Distributed Bag-of-words (PV-DBOW)
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Distributed models: training document vectors

Paragraph Vector (aka doc2vec)
I You train the model, then inference embeddings for the documents

you are interested in.
I The resulting embeddings are shown to perform very good on

sentiment analysis and other document classification tasks, as well
as in IR tasks.

I Very memory-hungry: each sentence gets its own vector (many
millions of sentences in the real-life corpora).

I It is possible to reduce the memory footprint by training a limited
number of vectors: group sentences into classes.
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Distributed models: training document vectors

There can be many other ways to employ embeddings in document
representation tasks!
For example:
I interpret sentences or paragraphs as ‘words’ and train a

straightforward word embedding model.
I etc...

The choice of an approach depends very much on your downstream
task.
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Distributed models: training document vectors

Questions?

INF5820
Distributional Semantics: Extracting Meaning from Data

Lecture 4
Beyond words: distributional representations of texts

Homework: obligatory assignment 3.
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In the next week

Kings and queens, men and women: semantic relations between word
embeddings
I Distributional models contain not only words, but also relations

between them;
I Why is that so?
I Mathematics behind this;
I Possible applications of semantic relations in distributional models;
I Projecting one model into another;
I etc...
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