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Semantic relations as geometrical directions

I Reducing high-dimensional representations to 2D or 3D can be
used not only to create fancy pictures (or videos);

I Sometimes looking at the data in an understandable form can bring
great insights...
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‘...ability of the model to automatically organize concepts and learn
implicitly the relationships between them...’ [Mikolov et al., 2013b]
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Semantic relations as geometrical directions

A surprising discovery
I Algebraic operations on word embeddings reflect semantic relations

I simple operations with word vectors, like addition, subtraction,
finding average, etc, produce intuitively meaningful results.

Examples
I Element-wise adding phone vector to mobile vector results in a

vector very close to cellphone;
I Element-wise subtracting France vector from Paris vector and

adding Germany vector results in a vector very close to Berlin;

~P − ~F + ~G ≈ ~B (1)

or

~G + ~P − ~F ≈ ~B (2)
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Semantic relations as geometrical directions

I The latter operation can be expressed as solving proportions or
performing analogical inference:

I ‘France is to Paris as Germany is to what?’
I this is what Google Analogy dataset tries to evaluate.

Stanford folks call that ‘directions of meaning’ [Pennington et al., 2014].
The GloVe model to some extent was designed with this particular task
in mind.

5



Semantic relations as geometrical directions

I The latter operation can be expressed as solving proportions or
performing analogical inference:

I ‘France is to Paris as Germany is to what?’

I this is what Google Analogy dataset tries to evaluate.

Stanford folks call that ‘directions of meaning’ [Pennington et al., 2014].
The GloVe model to some extent was designed with this particular task
in mind.

5



Semantic relations as geometrical directions

I The latter operation can be expressed as solving proportions or
performing analogical inference:

I ‘France is to Paris as Germany is to what?’
I this is what Google Analogy dataset tries to evaluate.

Stanford folks call that ‘directions of meaning’ [Pennington et al., 2014].
The GloVe model to some extent was designed with this particular task
in mind.

5



Semantic relations as geometrical directions

I The latter operation can be expressed as solving proportions or
performing analogical inference:

I ‘France is to Paris as Germany is to what?’
I this is what Google Analogy dataset tries to evaluate.

Stanford folks call that ‘directions of meaning’ [Pennington et al., 2014].

The GloVe model to some extent was designed with this particular task
in mind.

5



Semantic relations as geometrical directions

I The latter operation can be expressed as solving proportions or
performing analogical inference:

I ‘France is to Paris as Germany is to what?’
I this is what Google Analogy dataset tries to evaluate.

Stanford folks call that ‘directions of meaning’ [Pennington et al., 2014].
The GloVe model to some extent was designed with this particular task
in mind.

5



Semantic relations as geometrical directions

But isn’t it simply finding ‘geometrical’ directions in the
high-dimensional semantic space – from one word to another?

Can be any inference relation: plurality (dog→dogs), causality
(life→experience), hypernymy (falcon→bird), meronymy (leg→body ),
antonymy (hot→cold), etc.
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Semantic relations as geometrical directions

Semantic direction ‘a capital of’ in different models:

Visualized using t-SNE [Van der Maaten and Hinton, 2008]

But why the Google News model looks so bad? Any ideas?
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Semantic relations as geometrical directions

...we used lower-case lemmas, and this model has separate
embeddings for title-case and lower-case words (quite annoying).
Let’s try title-case countries and cities...

Looks better, doesn’t it?
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phone + mobile = cellphone
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Why vector algebra works?

Let’s recall the prediction model architecture:
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Why vector algebra works?

Why sum (element-wise addition) works?

phone + mobile = cellphone
I input vectors represent context distribution;
I they are related logarithmically to output probabilities;
I the sum of 2 input vectors ~x1 and ~x2 is related to the product of 2

probability context distributions;
I when multiplying 2 probability distributions, only words with high

probabilities for both ~x1 and ~x2 will rank higher;
I ...sort of AND function;
I if cellphone appears frequently as a context word for phone and

mobile, it will become the answer.
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Why vector algebra works?

Why analogical inference works?

Germany + Paris - France = Berlin

I That’s more difficult to explain.
I [Levy et al., 2015] are not sure that relational information exists in

contextual features at all.
I In fact, Germany + Paris produces Berlin as well.
I So it might be that in many cases there are no ‘relations’ at all, only

finding nearest associates of the positive input words.

But the idea is still attractive and produces empirical results.
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Possible applications

Geometric directions between word embeddings are used in many
sense-related applications.

Information extraction through semantic relations
I It is possible to find semantic relations like A is a capital of B, or A is

located in B.
I But it can be A is an object of B’s actions, for that matter.
I We can even build full-fledged ontologies using this approach.
I ...or find phenomena analogical to other phenomena in complex

ways.
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Possible applications

Unsupervised information extraction: militant groups across countries

14



Possible applications

Unsupervised information extraction: militant groups across countries

15



Possible applications

Unsupervised information extraction: militant groups across countries

Try yourself at
http://ltr.uio.no/semvec/calculator
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Possible applications

What next?
I We can cross the boundaries of one model and find links between

languages (relation of ‘being a translation of’).

I ‘Machine translation’ for words, relying only on monolingual
distributional models and small bilingual dictionaries.

I Let’s see how it can be done
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Possible applications

Inter-lingua?

[Mikolov et al., 2013a]

Languages share concepts grounded in the real world→ after proper
rotation and scaling, models (semantic spaces) trained on comparable
corpora from different languages should ‘map’ into each other.
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Possible applications

By the way, the recently announced Google’s Zero-Shot neural
machine translation model [Johnson et al., 2016] seems to rely on the
same inter-lingua intuition.
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Possible applications

The Mikolov’s idea of ‘distributional translation’ is to find regular
correspondences between vector spaces representing each language:

1. train monolingual distributional models for languages L1 and L2;
2. take a small bilingual dictionary L1→L2 with n frequent words

present in both models;
3. learn linear transformation matrix M between embeddings of

dictionary words in L1 and their translations in L2;

But how we do this?
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Projecting one model into another: models alignment

I Mapping one model into another by finding a linear transformation
matrix M is an optimization problem of minimizing prediction error –
linear regression, to be exact;

I to find M, one either:

1. learns the optimal weights iteratively (with gradient descent, etc..);
2. or solves the quadratic minimization problem by finding normal

equation.
I normal equation approach is guaranteed to find the global optimum.

βi = (Xᵀ × X)−1 × Xᵀ × yi (3)

X is the matrix of L1 dictionary word embeddings (input), yi is the vector of the i th

components of corresponding L2 dictionary words (correct predictions), and βi is our
aim: the vector of optimal coefficients which transform an L1 embedding into the i th

component of the L2 embedding.
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Projecting one model into another: models alignment

After solving such normal equations for all the components (their
number is equal to the L2 embeddings dimensionality i), we have the
matrix M which fits the data best:

n∑
a=1

(M ~xa − ~ya)
2 (4)

is minimal over all training data (n dictionary pairs).
I For any unseen word in L1, you can now multiply its vector ~x in the

L1 model by M: ~z = M~x .
I ~z is the translation vector;
I Find the word in L2 with the embedding most similar to ~z
I Use that word as a translation.
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(M ~xa − ~ya)
2 (4)

is minimal over all training data (n dictionary pairs).
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Results
[Mikolov et al., 2013a] report accuracy about 0.5 @1 and 0.75 @5 for
English→Spanish translation.

Our results for Ukrainian→Russian:
CBOW SkipGram Edit distance

Training Test Training Test

@1 0.648 0.57 0.545 0.374 0.549
@5 0.764 0.658 0.644 0.486 0.619

By the way, semantic fingerprints can be projected into another
semantic space using the same transformation matrix!
It means we can ‘translate’ whole documents.
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Projecting one model into another: models alignment

I Analogical inference can be interpreted as linear regression as well:

I We learn a regression matrix from a pair of example instances
(‘France →Paris’) and apply it to a test instance (‘Germany’)

I Say, we have example vectors [3,5] and [7,2], and a test instance
[4,4], which should map into [8,1]

I Linear regression will ‘learn’ weights [2.3, 0.4], and for the test
instance it will output [9.2, 0.8], pretty close to the desired result
[8,1].
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What else?
I Cross-model projections can be used not only for MT.

I We can study models sharing the same vocabulary (if there are
reasons to think that the semantics might be different).

Detecting semantic shifts
I Suppose we want to trace how word meaning changed throughout

time;
I Can be useful for diachronic linguistics...
I ...or for extracting new events from news texts.
I We train distributional models on time-separated corpora:

I XIX century
I XX century
I XXI century

I Another application is comparing word meanings in different
corpora (for example, fiction texts and web pages).

25



Projecting one model into another: models alignment

What else?
I Cross-model projections can be used not only for MT.
I We can study models sharing the same vocabulary (if there are

reasons to think that the semantics might be different).

Detecting semantic shifts
I Suppose we want to trace how word meaning changed throughout

time;
I Can be useful for diachronic linguistics...
I ...or for extracting new events from news texts.
I We train distributional models on time-separated corpora:

I XIX century
I XX century
I XXI century

I Another application is comparing word meanings in different
corpora (for example, fiction texts and web pages).

25



Projecting one model into another: models alignment

What else?
I Cross-model projections can be used not only for MT.
I We can study models sharing the same vocabulary (if there are

reasons to think that the semantics might be different).

Detecting semantic shifts
I Suppose we want to trace how word meaning changed throughout

time;

I Can be useful for diachronic linguistics...
I ...or for extracting new events from news texts.
I We train distributional models on time-separated corpora:

I XIX century
I XX century
I XXI century

I Another application is comparing word meanings in different
corpora (for example, fiction texts and web pages).

25



Projecting one model into another: models alignment

What else?
I Cross-model projections can be used not only for MT.
I We can study models sharing the same vocabulary (if there are

reasons to think that the semantics might be different).

Detecting semantic shifts
I Suppose we want to trace how word meaning changed throughout

time;
I Can be useful for diachronic linguistics...

I ...or for extracting new events from news texts.
I We train distributional models on time-separated corpora:

I XIX century
I XX century
I XXI century

I Another application is comparing word meanings in different
corpora (for example, fiction texts and web pages).

25



Projecting one model into another: models alignment

What else?
I Cross-model projections can be used not only for MT.
I We can study models sharing the same vocabulary (if there are

reasons to think that the semantics might be different).

Detecting semantic shifts
I Suppose we want to trace how word meaning changed throughout

time;
I Can be useful for diachronic linguistics...
I ...or for extracting new events from news texts.

I We train distributional models on time-separated corpora:
I XIX century
I XX century
I XXI century

I Another application is comparing word meanings in different
corpora (for example, fiction texts and web pages).

25



Projecting one model into another: models alignment

What else?
I Cross-model projections can be used not only for MT.
I We can study models sharing the same vocabulary (if there are

reasons to think that the semantics might be different).

Detecting semantic shifts
I Suppose we want to trace how word meaning changed throughout

time;
I Can be useful for diachronic linguistics...
I ...or for extracting new events from news texts.
I We train distributional models on time-separated corpora:

I XIX century
I XX century
I XXI century

I Another application is comparing word meanings in different
corpora (for example, fiction texts and web pages).

25



Projecting one model into another: models alignment

What else?
I Cross-model projections can be used not only for MT.
I We can study models sharing the same vocabulary (if there are

reasons to think that the semantics might be different).

Detecting semantic shifts
I Suppose we want to trace how word meaning changed throughout

time;
I Can be useful for diachronic linguistics...
I ...or for extracting new events from news texts.
I We train distributional models on time-separated corpora:

I XIX century

I XX century
I XXI century

I Another application is comparing word meanings in different
corpora (for example, fiction texts and web pages).

25



Projecting one model into another: models alignment

What else?
I Cross-model projections can be used not only for MT.
I We can study models sharing the same vocabulary (if there are

reasons to think that the semantics might be different).

Detecting semantic shifts
I Suppose we want to trace how word meaning changed throughout

time;
I Can be useful for diachronic linguistics...
I ...or for extracting new events from news texts.
I We train distributional models on time-separated corpora:

I XIX century
I XX century

I XXI century
I Another application is comparing word meanings in different

corpora (for example, fiction texts and web pages).

25



Projecting one model into another: models alignment

What else?
I Cross-model projections can be used not only for MT.
I We can study models sharing the same vocabulary (if there are

reasons to think that the semantics might be different).

Detecting semantic shifts
I Suppose we want to trace how word meaning changed throughout

time;
I Can be useful for diachronic linguistics...
I ...or for extracting new events from news texts.
I We train distributional models on time-separated corpora:

I XIX century
I XX century
I XXI century

I Another application is comparing word meanings in different
corpora (for example, fiction texts and web pages).

25



Projecting one model into another: models alignment

What else?
I Cross-model projections can be used not only for MT.
I We can study models sharing the same vocabulary (if there are

reasons to think that the semantics might be different).

Detecting semantic shifts
I Suppose we want to trace how word meaning changed throughout

time;
I Can be useful for diachronic linguistics...
I ...or for extracting new events from news texts.
I We train distributional models on time-separated corpora:

I XIX century
I XX century
I XXI century

I Another application is comparing word meanings in different
corpora (for example, fiction texts and web pages).

25



Projecting one model into another: models alignment

Houston, we have a problem
I But the resulting dense embeddings are not directly comparable

(unlike traditional sparse count-based vectors)!

I Because of stochastic nature of our modeling, we cannot simply
measure cosine distance between wxix , wxx and wxxi to find whether
the meaning has changed.

I What can be done?
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How to compare incomparable?
I One can do the same: learn transformation matrix.

I One can stick to comparing ranked lists of nearest associates,
abstracting away from the vector values.

I One can transform the semantic space A so that it matches the
semantic space B as closely as possible for the shared words, at
the same time retaining pair-wise similarities.

I For example, using the orthogonal Procrustes transformation:
I basically applying SVD to the dot product (B · Aᵀ)

Orthogonal Procrustes (from [Schneider and Borlund, 2007])
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Projecting one model into another: models alignment

Once the models are aligned, cosine distances between words from
different models (across models boundaries) become meaningful.
Semantic shifts can be traced:
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Such results can be produced even by comparing nearest associates
lists. But models alignment allows uncovering statistical laws of
semantic change on large scale:

See more at http://nlp.stanford.edu/projects/histwords/ and in
[Hamilton et al., 2016].
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Event extraction
I While updating a model with new data, continue aligning the

previous model with the current one;

I monitor changes in semantic relations;
I detect current events:
I ‘The country A is no more in adversary relations to the country B’.
I Lots of opportunities for automatizing the handling of large textual

data.
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Questions?

INF5820
Distributional Semantics: Extracting Meaning from Data

Lecture 5
Kings and queens, men and women:

semantic relations between word embeddings
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In the next week (last lecture)

What’s going on: recent advances and trends in the word embeddings
world
I Discussion on the results of the obligatory assignment.
I The exam: what to expect?
I Multilingual word embeddings.
I Language and vision embeddings.
I etc...
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