INF5820/INF9820

LANGUAGE TECHNOLOGICAL APPLICATIONS

1

Jan Tore Lønning, Lecture 3, 7 Sep., 2016 jtl@ifi.uio.no

Machine Translation Evaluation 2

- 1. Automatic MT-evaluation:
 - 1. BLEU
 - 2. Alternatives
 - 3. Evaluation evaluation
 - 4. Criticism
- 2. Starting STMT
 - 1. The noisy channel model
 - 2. Language models (n-grams)

Last week

- \Box Human evaluation
- \square Machine evaluation
 - Recall and precision
 - Word error rate
 - BLEU

BLEU

- A Bilingual Evaluation Understudy Score
- Main ideas:
 - Use several reference translations
 - Count precision of n-grams:
 - For each n-gram in output: does it occur in at least one reference?
 - Don't count recall but use a penalty for brevity

BLEU

$$p_{n} = \frac{\sum_{C \in \{Candidates\}} \sum_{n-gram \in C} Count_{clip}(n-gram, C, C.refs)}{\sum_{C \in \{Candidates\}} \sum_{n-gram \in C} Count (n-gram, C)}$$

Candidates:

the set of sentences output by trans. system

 \Box Count(n-gram, C):

□ the number of times *n*-gram occurs in C

- □ Count_{clip}(n-gram, C, C.refs):
 - □ the number of times the *n*.gram occurs in both
 - C and
 - the reference translation for the same sentence
 - where n.gram occurs most frequent

Technicality:

If the same n-gram has several occurrences in a candidate translation sentence, it should not be counted more times than the number of occurrences in the reference sentence with the largest number of occurrences of the same n-gram.

Example, p_1 and p_2

□ Hyp, C:

One of the girls gave one of the boys one of the boys.

- \Box C-Refs:
 - A girl gave a boy one of the toy cars
 - One of the girls gave a boy one of the cars.
- Count_clip('one', C, C-refs)=2

one	of	the	girls	gave	boys			
2 (3)	2 (3)	2 (3)	1	1	0(2)			

 $\square P_1 = 8/13$

one of	of the	the girls	girls gave	gave one	the boys	boys one
2 (3)	2 (3)	1	1	0 (1)	0(2)	0 (1)

 $\square P_2 = 6/12$

Example, p₃

□ Hyp, C:

One of the girls gave one of the boys one of the boys.

 \Box C-Refs:

A girl gave a boy <u>one of the</u> toy cars

One of the girls gave a boy <u>one of the cars</u>.

□ Count_clip('one of the', C, C-refs)=2

one of the	of the girls	the girls gave	girls gave one
2 (3)	1	1	O (1)

gave one of	of the boys	the boys one	boys one of
0 (1)	0 (2)	0 (1)	0 (1)

 $\square P_3 = 4/11$

Example continued

$$\prod_{i=1}^{4} p_i = p_1 \cdot p_2 \cdot p_3 \cdot p_4 = \frac{8}{13} \cdot \frac{6}{12} \cdot \frac{4}{11} \cdot \frac{2}{10} \approx 0.02238$$

$$\left(\prod_{i=1}^{4} p_i\right)^{\frac{1}{4}} \approx 0.02238^{\frac{1}{4}} \approx 0.39$$

BLEU

□ How to combine the n-gram precisions?

$$p_1 \times p_2 \times \cdots \times p_n = \prod_{i=1}^n p_i$$

Remember

$$\ln(\prod_{i=1}^{n} p_i) = \ln(p_1 \times p_2 \times \dots \times p_n) = \ln(p_1) + \ln(p_2) + \dots + \ln(p_n) = \sum_{i=1}^{n} \ln p_i$$

 \Box One can add weights, typically ai = 1/n

 $\ln(p_1^{a_1} \times p_2^{a_2} \times \dots \times p_n^{a_n}) = a \ln(p_1) + a 2 \ln(p_2) + \dots + a n \ln(p_n)$

How long n-grams?

Max 4-grams seems to work best

Brevity penalty

 $\hfill\square$ c is the length of the candidates

r is the length of the reference translations:
 for each C choose the R most similar in length

BLEU-4

BLEU-4 =
$$exp\left(\min\left(1-\frac{r}{c},0\right)\sum_{i=1}^{4}\frac{1}{4}\ln p_i\right)$$

BLEU-4 = min
$$\left(e^{\left(1-\frac{r}{c}\right)}, 1\right)\left(\prod_{i=1}^{4} p_i\right)^{\frac{1}{4}}$$

Machine Translation Evaluation 2

- 1. Automatic MT-evaluation:
 - 1. BLEU
 - 2. Alternatives
 - 3. Evaluation evaluation
 - 4. Criticism
- 2. Starting STMT
 - 1. The noisy channel model
 - 2. Language models (n-grams)

NIST score

- National Institute of Standards and Technology
- Evaluated BLEU score further
- Proposed an alternative formula:
 - N-grams are weighed by their inverse frequency
 - Sums (instead of products) of counts over n-grams
 - Modified Brevity Penalty
- Freely available software

Machine Translation Evaluation 2

- 1. Automatic MT-evaluation:
 - 1. BLEU
 - 2. Alternatives
 - 3. **Evaluation evaluation**
 - 4. Criticism
- 2. Starting STMT
 - 1. The noisy channel model
 - 2. Language models (n-grams)

Evaluating the automatic evaluation

- □ Is the automatic evaluation correct?
- Yes, if it gives the same results as human evaluators.
 Best measured as ranking of MT systems:

Does BLEU rank a set of MT systems in the same order as human evaluators?

BLEU – original paper

Figure 2: Machine and Human Translations

H1, H2 – 2 different human translations S1, S2, S3 – different MT systems

Pearson's Correlation Coefficient

- Two variables: automatic score x, human judgment y
- Multiple systems (x_1, y_1) , (x_2, y_2) , ...
- Pearson's correlation coefficient r_{xy}:

$$r_{xy} = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{(n-1) \ s_x \ s_y}$$

Note:

mean
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 variance $s_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$

Chapter 8: Evaluation

Machine Translation Evaluation 2

- 1. Automatic MT-evaluation:
 - 1. BLEU
 - 2. Alternatives
 - 3. Evaluation evaluation
 - 4. Criticism
- 2. Starting STMT
 - 1. The noisy channel model
 - 2. Language models (n-grams)

Shortcomings of automatic MT

- Re-evaluating the Role of BLEU in Machine Translation Research, 2006
 - Chris Callison-Burch, Miles Osborne, Philipp Koehn
- \Box Theoretically:
 - From a reference translation one may
 - Construct a string of words, which:
 - Gets a high BLEU score
 - Is gibberish
- □ Empirically: (next slides)

Evidence of Shortcomings of Automatic Metrics

Post-edited output vs. statistical systems (NIST 2005)

Chapter 8: Evaluation

Automatic evaluation

Cheap

- Reusable in development phase
- A touch of objectivity
- Useful tool for machine learning, e.g. reranking
- Boes not measure MT quality, only (more or less) correlated with MT quality
- S Favors statistical approaches, disfavors humans
- The numbers don't say anything across different evaluations
 Depends on number and type of reference translations
- Danger of system tuning towards BLEU on the cost of quality
 In particular in machine learning

Hypothesis testing

- □ You may skip sec. 8.3
- □ Though:
 - 8.3.1 for they who have INF5830
 - 8.3.2, when you have 2 different systems
 - You might evaluate first one system, then the other on the whole material and compare the results
 - Often better: Compare item by item which system is the better and do statistics on the results

Machine Translation Evaluation 2

- 1. Automatic MT-evaluation:
 - 1. BLEU
 - 2. Alternatives
 - 3. Evaluation evaluation
 - 4. Criticism
- 2. Starting STMT
 - 1. The noisy channel model
 - 2. Language models (n-grams)

SMT example

En	kokk	lagde	en	rett	med	bygg	•
a 0.9	chef 0.6	made 0.3	a 0.9	right 0.19	with 0.4	building 0.45	
•••	cook 0.3	created 0.25	•••	straight 0.17	by 0.3	construction 0.33	
		prepared 0.15		court 0.12	of 0.2	barley 0.11	
		constructed 0.12		dish 0.11		•••	
		cooked 0.05		course 0.07			

	Pos4 – pos 6 (1x3x3 many)		Pos5 – pos 7 (5x3x3 many)		
Similarly for:	a right with	2.7x10 ⁻¹²	right with building	1.7x10 ⁻¹⁸	
 pos 0-2 (2x3) pos 1-3 	a right of	1.5x10 ⁻¹⁰	right with construction	5.4x10 ⁻¹⁸	
• pos 2-4	a right by	9.7x10 ⁻¹²	right with barley	8.7x10 ⁻¹⁹	
 pos 3-5 (4x5) pos 6-8 					
pos 0-0	a course of	1.5x10 ⁻¹⁴	course of barley	1.5x10 ⁻¹⁶	

Noisy Channel Model

- Applying Bayes rule also called noisy channel model
 - we observe a distorted message R (here: a foreign string f)
 - we have a model on how the message is distorted (here: translation model)
 - we have a model on what messages are probably (here: language model)
 - we want to recover the original message S (here: an English string e)