N-5820/NFO820
 LANGUAGE TECHNOLOGICAL APPLICATIONS

Jan Tore Lønning, Lecture 3, 7 Sep., 2016 it1@ifi.uio.no

Machine Translation Evaluation 2

1. Automatic MT-evaluation:
2. BLEU
3. Alternatives
4. Evaluation evaluation
5. Criticism
6. Starting STMT
7. The noisy channel model
8. Language models (n-grams)

Last week

\square Human evaluation
\square Machine evaluation

- Recall and precision
- Word error rate
- BLEU
\square A Bilingual Evaluation Understudy Score
\square Main ideas:
- Use several reference translations
- Count precision of n-grams:
\square For each n-gram in output: does it occur in at least one reference?
- Don't count recall but use a penalty for brevity

$$
\left.p_{n}=\frac{\sum_{C \in\{\text { Candidates }\}} \sum_{n-\text { gram } \in C} \operatorname{Count}_{\text {clip }}(n-\text { gram, } C, \text { C.refs })}{\sum_{C \in\{\text { Candidates }\}}} \sum_{n-\text { gram } \in C} \operatorname{Count}(n-\text { gram }, C)\right)
$$

- Candidates:
- the set of sentences output by trans. system
- Count(n-gram, C):
- the number of times n-gram occurs in C
\square Count clip $^{\text {(}}$ - gram, C, C. refs) :
- the number of times the n.gram occurs in both
- C and
- the reference translation for the same sentence
- where n.gram occurs most frequent
\square Technicality:
- If the same n-gram has several occurrences in a candidate translation sentence, it should not be counted more times than the number of occurrences in the reference sentence with the largest number of occurrences of the same n-gram.

Example, p_{1} and p_{2}

\square Hyp, C:

- One of the girls gave one of the boys one of the boys.
\square C-Refs:
- A girl gave a boy one of the toy cars
- One of the girls gave a boy one of the cars.
\square Count_clip('one', C, C-refs)=2

one	of	the	girls	gave	boys					
$2(3)$	$2(3)$	$2(3)$	1	1	$0(2)$					

$\square P_{1}=8 / 13$

one of	of the	the girls	girls gave	gave one	the boys	boys one
$2(3)$	$2(3)$	1	1	$0(1)$	$O(2)$	$0(1)$

$\square \mathrm{P}_{2}=6 / 12$

Example, p_{3}

\square Hyp, C:

- One of the girls gave one of the boys one of the boys.
\square C-Refs:
- A girl gave a boy one of the toy cars
- One of the girls gave a boy one of the cars.
\square Count_clip('one of the', C, C-refs)=2

one of the	of the girls	the girls gave	girls gave one
$2(3)$	1	1	$0(1)$
gave one of	of the boys	the boys one	boys one of
$0(1)$	$O(2)$	$O(1)$	$0(1)$

$\square P_{3}=4 / 11$

Example continued

$$
\prod_{i=1}^{4} p_{i}=p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4}=\frac{8}{13} \cdot \frac{6}{12} \cdot \frac{4}{11} \cdot \frac{2}{10} \approx 0.02238
$$

$$
\left(\prod_{i=1}^{4} p_{i}\right)^{\frac{1}{4}} \approx 0.02238^{\frac{1}{4}} \approx 0.39
$$

BLEU

\square How to combine the n-gram precisions?

$$
p_{1} \times p_{2} \times \cdots \times p_{n}=\prod_{i=1}^{n} p_{i}
$$

\square Remember

$$
\ln \left(\prod_{i=1}^{n} p_{i}\right)=\ln \left(p_{1} \times p_{2} \times \cdots \times p_{n}\right)=\ln \left(p_{1}\right)+\ln \left(p_{2}\right)+\cdots+\ln \left(p_{n}\right)=\sum_{i=1}^{n} \ln p_{i}
$$

\square One can add weights, typically ai $=1 / n$
$\ln \left(p_{1}^{a 1} \times p_{2}^{a 2} \times \cdots \times p_{n}^{a n}\right)=a 1 \ln \left(p_{1}\right)+a 2 \ln \left(p_{2}\right)+\cdots+a n \ln \left(p_{n}\right)$
\square How long n-grams?

- Max 4-grams seems to work best

Brevity penalty

$\square \mathrm{c}$ is the length of the candidates
$\square r$ is the length of the reference translations:

- for each C choose the R most similar in length
\square Penalty applies if $c<r$:
$\square B P=1 \quad$ if $c \geq r$
$\square B P=e^{(1-r / c)} \quad$ otherwise
$\square \quad B L E U=B P \cdot \exp \sum_{i=1}^{n} w_{n} \ln p_{i}$
$\square \ln B L E U=\min \left(1-\frac{r}{c}, 0\right)+\sum_{i=1}^{n} w_{n} \ln p_{i}$

$$
c=\sum_{C \in C \text { andidates }} \text { length }(C)
$$

$$
r=\sum_{C \in \text { Candidates }} \text { length(R.sim.C) }
$$

This is correct
 Error in K:SMT

Use logarithms to avoid underflow!

BLEU-4

$$
\begin{aligned}
& \operatorname{BLEU}-4=\exp \left(\min \left(1-\frac{r}{c}, 0\right) \sum_{i=1}^{4} \frac{1}{4} \ln p_{i}\right) \\
& \operatorname{BLEU}-4=\min \left(e^{\left(1-\frac{r}{c}\right)}, 1\right)\left(\prod_{i=1}^{4} p_{i}\right)^{\frac{1}{4}}
\end{aligned}
$$

Machine Translation Evaluation 2

1. Automatic MT-evaluation:
2. BLEU
3. Alternatives
4. Evaluation evaluation
5. Criticism
6. Starting STMT
7. The noisy channel model
8. Language models (n-grams)
\square National Institute of Standards and Technology
\square Evaluated BLEU score further
\square Proposed an alternative formula:
$\square \mathrm{N}$-grams are weighed by their inverse frequency
\square Sums (instead of products) of counts over n-grams

- Modified Brevity Penalty
\square Freely available software

Machine Translation Evaluation 2

1. Automatic MT-evaluation:
2. BLEU
3. Alternatives
4. Evaluation evaluation
5. Criticism
6. Starting STMT
7. The noisy channel model
8. Language models (n-grams)

Evaluating the automatic evaluation

\square Is the automatic evaluation correct?
\square Yes, if it gives the same results as human evaluators.

- Best measured as ranking of MT systems:

Does BLEU rank a set of MT systems in the same order as human evaluators?

BLEU - original paper

Figure 2: Machine and Human Translations

$\square \mathrm{H} 2 \square \mathrm{Hl} \square \mathrm{S} 3 \square \mathrm{~S} 2 \square \mathrm{~S} 1$

H1, H2 - 2 different human translations S1, S2, S3 - different MT systems

Figure 6: Bleu predicts Bilingual Judgments
 \rightarrow Predicted \bullet Bilingual Group

Pearson's Correlation Coefficient

- Two variables: automatic score x, human judgment y
- Multiple systems $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$
- Pearson's correlation coefficient $r_{x y}$:

$$
r_{x y}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{(n-1) s_{x} s_{y}}
$$

- Note:

$$
\begin{aligned}
\text { mean } \bar{x} & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\text { variance } s_{x}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
\end{aligned}
$$

Machine Translation Evaluation 2

1. Automatic MT-evaluation:
2. BLEU
3. Alternatives
4. Evaluation evaluation
5. Criticism
6. Starting STMT
7. The noisy channel model
8. Language models (n-grams)

Shortcomings of automatic MT

\square Re-evaluating the Role of BLEU in Machine Translation Research, 2006

- Chris Callison-Burch, Miles Osborne, Philipp Koehn
\square Theoretically:
- From a reference translation one may
- Construct a string of words, which:
- Gets a high BLEU score
- Is gibberish
- Empirically: (next slides)

Evidence of Shortcomings of Automatic Metrics

Post-edited output vs. statistical systems (NIST 2005)

Automatic evaluation

© Cheap
© Reusable in development phase
(-) A touch of objectivity
© Useful tool for machine learning, e.g. reranking
(8) Does not measure MT quality, only (more or less) correlated with MT quality

* Favors statistical approaches, disfavors humans
* The numbers don't say anything across different evaluations
(8) Depends on number and type of reference translations
* Danger of system tuning towards BLEU on the cost of quality
* In particular in machine learning

Hypothesis testing

\square You may skip sec. 8.3
\square Though:

- 8.3.1 for they who have INF5830
- 8.3.2, when you have 2 different systems

■ You might evaluate first one system, then the other on the whole material and compare the results

- Often better: Compare item by item which system is the better and do statistics on the results

Machine Translation Evaluation 2

1. Automatic MT-evaluation:
2. BLEU
3. Alternatives
4. Evaluation evaluation
5. Criticism
6. Starting STMT
7. The noisy channel model
8. Language models (n-grams)

SMT example

En	kokk	lagde	en	reth	med	bygg	
a 0.9	chef 0.6	made 0.3	a 0.9	right 0.19	with 0.4	building 0.45	
\ldots	cook 0.3	created 0.25	\ldots	straight 0.17	by 0.3	construction 0.33	
	\ldots	prepared 0.15		court 0.12	of 0.2	barley 0.11	
	constructed 0.12		dish 0.11	\ldots	\ldots		
		cooked 0.05		course 0.07			
		\ldots		\ldots			

```
Similarly for:
    - pos 0-2 (2x3)
    - pos 1-3
    - pos 2-4
    - pos 3-5 (4\times5)
    - pos 6-8
```

Pos4 - pos $6(1 \times 3 \times 3$ many $)$		Pos5 - pos $7(5 \times 3 \times 3$ many $)$	
a right with	2.7×10^{-12}	right with building	1.7×10^{-18}
a right of	1.5×10^{-10}	right with construction	5.4×10^{-18}
a right by	9.7×10^{-12}	right with barley	8.7×10^{-19}
\ldots		\ldots	
a course of	1.5×10^{-14}	course of barley	1.5×10^{-16}

Noisy Channel Model

- Applying Bayes rule also called noisy channel model
- we observe a distorted message R (here: a foreign string f)
- we have a model on how the message is distorted (here: translation model)
- we have a model on what messages are probably (here: language model)
- we want to recover the original message S (here: an English string e)

