INF5820/INF9820

LANGUAGE TECHNOLOGICAL APPLICATIONS

1

Jan Tore Lønning, Lecture 5, 21 Sep. 2016 jtl@ifi.uio.no

Today

\square Repetition:

Statistical machine translation:
 The noisy channel model

 IBM model 1
 Training the intuitive way

 Training — the fast way
 Higher IBM-models

The noisy channel model

$$\hat{E} = \underset{E}{\arg \max} P(E | F)$$

$$= \arg \underset{E}{\arg \max} \frac{P(F | E)P(E)}{P(F)}$$

$$= \arg \underset{E}{\arg \max} P(F | E)P(E)$$

□ Use n-gram language model for P(E)

Alignment

- \Box Length of English string: k (=7)
- \Box Length of foreign string: m (=9)
- An alignment is a vector of length *m*, each entry a number between 0 and k
- \Box The example:

$$\Box < a_1, a_2, ..., a_9, > = <1, 3, 4, 4, 4, 0, 5, 7, 6 >$$

IBM Model 1

5

□ Consider all possible alignments **a**:

$$P(\mathbf{f} \mid \mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})$$

□ For each alignment use the simplified generative model:

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \frac{\varepsilon}{(k+1)^m} \prod_{j=1}^m t(f_j | e_{a_j})$$

 $\square \epsilon$ is a normalisation factor

Formula 4.7 in the SMT book

• (The book goes
$$f \rightarrow e$$
, not $e \rightarrow f$)

Step 3.1: Collect frac. counts ctd

6

 $f_2, e_2:$ $f_2, e_2:$ $f_2 = 64 \text{ aligments, with prob 1/64}$ $f_2 = bet, e = bit$ $f_2 = bet, e = bit$ $f_2 = bet, e = bit$ $f_2 = bet, e_2 = 16/64 = 1/4$ $f_2 = bet, e = dog$ $f_2 = bet, e = dog$

c(hund dog; f ₂ , e ₂)= 1	c(bet dog; f_2, e_2) = 1/2
c(hund bit; f_2, e_2) = 1/2	c(bet bit; f_2, e_2) = 1/4
c(hund 0; f_2, e_2) = 1/2	c(bet 0; f ₂ , e ₂) = 1/4

Step 3.1: Collect frac. counts ctd

- f_2 , e_2 : 64 alignents, with prob 1/64
- \Box f=hund, e = dog
- □ 2 ways of thinking

What is the count where

- f1 is a translation of e1?
 - The alignments <1,x,y> for any x and y
 - 16/64
- f1 is a translation of e3?
- e3 a translation of f1?
- e3 a translation of f3?
 4*(16/64)=1

e₂: Dog bit dogf₂: Hund bet hund

For the alignment <1,2,3>:

- How many times is hund aligned with dog? 2
- Similarly for <x,y,z> where x is 1 or 3 and z is 1 or 3:
 - 16 alignments
 - Frac count: 16*2/64

For the alignments <1,y,z> where z is 0 or

- 2:
- hund-dog aligned 1 time
- 8*1/64=1/8
- Similarly for
 - <3,y,z>, z is 0 or 2
 - <x,y,z>, for $x \in \{0,2\}, y \in \{1,3\}$

Counting for one sentence

$$c(f \mid e; \mathbf{e}, \mathbf{f}) = \sum_{\mathbf{a}} (p(\mathbf{a} \mid \mathbf{e}, \mathbf{f})) \sum_{j=1}^{m} \delta(f, f_j) \times \delta(e, e_{\mathbf{a}_j}))$$

The part
$$\sum_{j=1}^{m} \delta(f, f_j) \times \delta(e, e_{\mathbf{a}_j})$$

counts how many times the alignment a connects a word of the type f with one of type e

- $\Box \delta(a,b) = 1$ if and only if a = b, otherwise 0
- We multiply with the probability of this alignment
 And sum over all alignments

Today

\square Repetition:

Statistical machine translation:
 The noisy channel model

 IBM model 1
 Training the intuitive way

 Training — the fast way
 Higher IBM-models

Training – the idea

- 1. From the translation probabilities, we may estimate alignment probabilities
 - (We do not choose only the best alignment)
- 2. From alignment probabilities, we may maximize translation probabilities
- By alternating between (1) and (2), the numbers converge towards better results
- For IBM Model 1 it may be proved that they converge towards a global optimum

Too many alignments

Words, m=k	2	3	4	6	8	10
Align.	9	64	625	117 649	43mill	25 billions

Training – the intuitive approach

- 1. Initalize the parameter values t(f/e) for pairs of words f and e.
- 2. For each sentences pair f, e calculate the probabilities P(a | f, e) of all alignments a.
- 3. Collect fractional counts, tc(f/e):
 - 1. First, calculate this, c(f/e; f, e) for each sentence f, e,
 - 2. Then add over all sentences
- 4. Calculate the new translation probabilities t(f/e)
- 5. Repeat from 2 as long as you like

Training – the efficient approach

- 13
- 1. Initalize the parameter values t(f/e) for pairs of words f and e.
- 2. For each sentences pair f, e calculate the probabilities P(a | f, e) to all alignments a.
 - Collect fractional counts, tc(f/e):
 - 1. First, calculate this, c(f/e; f, e) for each sentence f, e,
 - 2. Then add over all sentences
- 4. Calculate the new translation probabilities t(f/e)
- 5. Repeat from 2 as long as you like

IBM Model 1

14

□ Consider all possible alignments **a**:

$$P(\mathbf{f} \mid \mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})$$

□ For each alignment use the simplified generative model:

$$P(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = \frac{\varepsilon}{(k+1)^m} \prod_{j=1}^m t(f_j \mid e_{a_j})$$

 $\square \epsilon$ is a normalisation factor

Formula 4.7 in the SMT book

• (The book goes
$$f \rightarrow e$$
, not $e \rightarrow f$)

Necessary simplification

$$P(\mathbf{f} \mid \mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = \sum_{\mathbf{a}} \frac{\varepsilon}{(k+1)^m} \prod_{j=1}^m t(f_j \mid e_{a_j})$$
$$P(\mathbf{f} \mid \mathbf{e}) = \sum_{a_1=0}^k \cdots \sum_{am=0}^k \frac{\varepsilon}{(k+1)^m} \prod_{j=1}^m t(f_j \mid e_{a_j})$$

□ This equals $P(\mathbf{f} \mid \mathbf{e}) = \frac{\varepsilon}{(k+1)^m} \prod_{j=1}^m \sum_{i=0}^k t(f_j \mid e_i)$ □ Because

$\prod_{j=1}^{m} \sum_{i=0}^{k} c_{j,i} = (c_{1,0} + c_{1,1} + \dots + c_{1,k})(c_{2,0} + \dots + c_{2,k}) \cdots (c_{m,0} + \dots + c_{m,k}) = \sum_{i=0}^{k} \cdots \sum_{i=0}^{k} \prod_{j=1}^{m} c_{j,i}$

Reduces the problem from the order $(k + 1)^n$ to roughly $k \times n$

Putting this together

 $\square \text{ So far} \qquad P(\mathbf{a} \mid \mathbf{f}, \mathbf{e}) = \frac{P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})}{P(\mathbf{f} \mid \mathbf{e})}$ $P(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = \frac{\varepsilon}{(k+1)^m} \prod_{j=1}^m t(f_j \mid e_{a_j})$ $P(\mathbf{f} \mid \mathbf{e}) = \frac{\varepsilon}{(k+1)^m} \prod_{j=1}^m \sum_{i=0}^k t(f_j \mid e_i)$

$$P(\mathbf{a} \mid \mathbf{f}, \mathbf{e}) = \frac{\frac{\varepsilon}{(k+1)^m} \prod_{j=1}^m t(f_j \mid e_{a_j})}{\frac{\varepsilon}{(k+1)^m} \prod_{j=1}^m \sum_{i=0}^k t(f_j \mid e_i)}$$

🗆 Formula 4.11

□ Hence

$$P(\mathbf{a} | \mathbf{f}, \mathbf{e}) = \frac{\prod_{j=1}^{m} t(f_j | e_{a_j})}{\prod_{j=1}^{m} \sum_{i=0}^{k} t(f_j | e_i)}$$

Counting for one sentence

$$c(f \mid e; \mathbf{e}, \mathbf{f}) = \sum_{\mathbf{a}} (p(\mathbf{a} \mid \mathbf{e}, \mathbf{f})) \sum_{j=1}^{m} \delta(f, f_j) \times \delta(e, e_{\mathbf{a}_j}))$$

The part
$$\sum_{j=1}^{m} \delta(f, f_j) \times \delta(e, e_{\mathbf{a}_j})$$

counts how many times the alignment a connects a word of the type f with one of type e

- $\Box \delta(a,b) = 1$ if and only if a = b, otherwise 0
- We multiply with the probability of this alignment
 And sum over all alignments

Counting for one sentence

$$c(f | e; \mathbf{e}, \mathbf{f}) = \sum_{\mathbf{a}} (p(\mathbf{a} | \mathbf{e}, \mathbf{f}) \sum_{j=1}^{m} \delta(f, f_j) \times \delta(e, e_{\mathbf{a}_j}))$$

Substituting in for p(a | e,f)

$$c(f \mid e; \mathbf{e}, \mathbf{f}) = \sum_{\mathbf{a}} \left(\frac{\prod_{j=1}^{m} t(f_j \mid e_{\mathbf{a}_j})}{\prod_{j=1}^{m} \sum_{i=0}^{k} t(f_j \mid e_i)} \sum_{j=1}^{m} \delta(f, f_j) \times \delta(e, e_{\mathbf{a}_j}) \right)$$

□ and doing some non-trivial calculation:

$$c(f \mid e; \mathbf{e}, \mathbf{f}) = \frac{t(f \mid e)}{\sum_{i=0}^{k} t(f \mid e_i)} \sum_{j=1}^{m} \delta(f, f_j) \sum_{i=0}^{k} \delta(e, e_i)$$

Observe: Directly from *t* to $c(f|e; \mathbf{e}, \mathbf{f})$ without mentioning the *a*-s

 Counting over the whole corpus and normalize as before

$$t(f \mid e) = \frac{\sum_{(\mathbf{f}, \mathbf{e})} c(f \mid e; \mathbf{f}, \mathbf{e})}{\sum_{f'} \sum_{(\mathbf{f}, \mathbf{e})} c(f' \mid e; \mathbf{f}, \mathbf{e})}$$

Example – the efficient way

□ Corpus

e₁: Dog barkedf₁: Hund bjeffet

e₂: Dog bit dog
f₂: Hund bet hund

3 English words: dog bit barked3 foreign words: hund bjeffet bet

t(hund dog) = 1/3	t(bet dog) = 1/3	t(bjeffet dog) = 1/3
t(hund bit) = 1/3	t(bet bit) = 1/3	t(bjeffet bit) = 1/3
t(hund barked) = 1/3	t(bet barked) = 1/3	t(bjeffet barked) = $1/3$
t(hund 0) = 1/3	t(bet 0) = 1/3	t(bjeffet 0) = 1/3

$$c(f \mid e; \mathbf{e}, \mathbf{f}) = \frac{t(f \mid e)}{\sum_{i=0}^{k} t(f \mid e_i)} \sum_{j=1}^{m} \delta(f, f_j) \sum_{i=0}^{k} \delta(e, e_i)$$

e₁: Dog barked **f**₁: Hund bjeffet

$$c(hund \mid barked; \mathbf{e}_1, \mathbf{f}_1) = \frac{t(hund \mid barked)}{\sum_{i=0}^2 t(f \mid e_i)} \sum_{j=1}^2 \delta(hund, f_j) \sum_{i=0}^2 \delta(barked, e_i) = \frac{t(hund \mid barked)}{\sum_{i=0}^2 t(f \mid e_i)} \sum_{j=1}^2 \delta(hund, f_j) \sum_{i=0}^2 \delta(barked, e_i) = \frac{t(hund \mid barked)}{\sum_{i=0}^2 t(f \mid e_i)} \sum_{j=1}^2 \delta(hund, f_j) \sum_{i=0}^2 \delta(barked, e_i) = \frac{t(hund \mid barked)}{\sum_{i=0}^2 t(f \mid e_i)} \sum_{j=1}^2 \delta(hund, f_j) \sum_{i=0}^2 \delta(barked, e_i) = \frac{t(hund \mid barked)}{\sum_{i=0}^2 t(f \mid e_i)} \sum_{j=1}^2 \delta(hund, f_j) \sum_{i=0}^2 \delta(barked, e_i) = \frac{t(hund \mid barked)}{\sum_{i=0}^2 t(f \mid e_i)} \sum_{j=1}^2 \delta(hund, f_j) \sum_{i=0}^2 \delta(barked, e_i) = \frac{t(hund \mid barked)}{\sum_{i=0}^2 t(f \mid e_i)} \sum_{j=1}^2 \delta(hund, f_j) \sum_{i=0}^2 \delta(barked, e_i) = \frac{t(hund \mid barked)}{\sum_{i=0}^2 t(f \mid e_i)} \sum_{j=1}^2 \delta(hund, f_j) \sum_{i=0}^2 \delta($$

 $\frac{1/3}{\sum_{i=0}^{2} (1/3)} (\delta(hund, hund) + \delta(hund, bjeffet)) \times (\delta(barked, 0) + \delta(barked, dog) + \delta(barked, barked)) = 1/3$

t(hund dog) = 1/3	t(bet dog) = 1/3	t(bjeffet dog) = 1/3
t(hund bit) = 1/3	t(bet bit) = 1/3	t(bjeffet bit) = 1/3
t(hund barked) = 1/3	t(bet barked) = 1/3	t(bjeffet barked) = 1/3
t(hund 0) = 1/3	t(bet 0) = 1/3	t(bjeffet 0) = 1/3

$$c(f \mid e; \mathbf{e}, \mathbf{f}) = \frac{t(f \mid e)}{\sum_{i=0}^{k} t(f \mid e_i)} \sum_{j=1}^{m} \delta(f, f_j) \sum_{i=0}^{k} \delta(e, e_i) \qquad \mathbf{e}_2: \text{ Dog bit dog}$$

$$\mathbf{f}_2: \text{ Hund bet hund}$$

$$c(bet \mid bit; \mathbf{e}_{2}, \mathbf{f}_{2}) = \frac{t(bet \mid bit)}{\sum_{i=0}^{3} t(bet \mid e_{i})} \sum_{j=1}^{3} \delta(bet, f_{j}) \sum_{i=0}^{3} \delta(bit, e_{i}) = \frac{1/3}{\sum_{i=0}^{3} (1/3)} \times 1 \times 1 = 1/4$$

$$c(hund \mid dog; \mathbf{e}_{2}, \mathbf{f}_{2}) = \frac{t(hund \mid dog)}{\sum_{i=0}^{3} t(hund \mid e_{i})} \sum_{j=1}^{3} \delta(hund, f_{j}) \sum_{i=0}^{3} \delta(dog, e_{i}) = \frac{1/3}{\sum_{i=0}^{3} (1/3)} \times 2 \times 2 = 1$$

Collect fractional counts

e ₁ : Dog barked f ₁ : Hund bjeffet	Results are the same as the intuitive way
c(hund dog; f_1, e_1) = 1/3	c(bjeffet dog; f_1, e_1) = 1/3
c(hund barked; f_1, e_1) = 1/3	c(bjeffet barked; $\mathbf{f}_1, \mathbf{e}_1$) = 1/3
c(hund 0; f_1, e_1) = 1/3	c(bjeffet 0; f_1, e_1) = 1/3
e ₂ : Dog bit dog f ₂ : Hund bet hund	
\mathbf{e}_2 : Dog bit dog \mathbf{f}_2 : Hund bet hund c(hund dog; \mathbf{f}_2 , \mathbf{e}_2)= 1	c(bet dog; f_2, e_2) = 1/2
\mathbf{e}_2 : Dog bit dog \mathbf{f}_2 : Hund bet hund $\mathbf{c}(\text{hund} \mid \text{dog}; \mathbf{f}_2, \mathbf{e}_2) = 1$ $\mathbf{c}(\text{hund} \mid \text{bit}; \mathbf{f}_2, \mathbf{e}_2) = 1/2$	c(bet dog; f_2 , e_2) = 1/2 c(bet bit; f_2 , e_2) = 1/4

Step 3.2: Total counts (as before)

$$tc(f | e) = \sum_{(\mathbf{f}, \mathbf{e})} c(f | e; \mathbf{f}, \mathbf{e})$$

tc(hund dog) = 1 + 1/3	tc(bet dog) = 1/2	tc(bjeffet dog) = 1/3	tc(* dog)=4/3+1/2+1/3 =13/6
$tc(hund bit) = \frac{1}{2}$	$tc(bet bit) = \frac{1}{4}$	tc(bjeffet bit) = 0	tc(* bit)=3/4
tc(hund barked) = $1/3$	tc(bet barked) = 0	tc(bjeffet barked) = 1/3	tc(* barked) = 2/3
$tc(hund 0) = \frac{1}{2} + \frac{1}{3}$	tc(bet 0) = 1/4	tc(bjeffet 0) = 1/3	tc(* 0)=17/12

Step 4: new trans. probabilities

$t(f _{a}) =$	tc(f e)
<i>(</i> () <i>e</i>) =	$\overline{\sum_{f'} tc(f' e)}$

e	f	t(f e)	exact	decimal
0	hund	(5/6)/(17/12)	10/17	0.588235
0	bet	(1/4)/(17/12)	3/17	0.176471
0	bjeffet	(1/3)/(17/12)	4/17	0.235294
dog	hund	(4/3)/(13/6)	8/13	0.615385
dog	bet	(1/2)/(13/6)	3/13	0.230769
dog	bjeffet	(1/3)/(13/6)	2/13	0.153846
bit	hund	(1/2)/(3/4)	2/3	0.666667
bit	bet	(1/4)/(3/4)	1/3	0.333333
barked	hund	(1/3)/(2/3	1/2	0.5
barked	bjeffet	(1/3)/(2/3)	1/2	0.5

Repeat: calculate fractional counts

26

□ Examples

$$\begin{split} c(hund \mid barked; \mathbf{e}_{1}, \mathbf{f}_{1}) &= \frac{t(hund \mid barked)}{\sum_{i=0}^{2} t(f \mid e_{i})} \sum_{j=1}^{2} \delta(hund, f_{j}) \sum_{i=0}^{2} \delta(barked, e_{i}) = \\ \frac{0.5}{0.588235 + 0.615385 + 0.5} &= \frac{0.5}{1.70362} = 0.2934927 \end{split}$$

$$\begin{aligned} c(hund \mid dog; \mathbf{e}_{2}, \mathbf{f}_{2}) &= \frac{t(hund \mid dog)}{\sum_{i=0}^{3} t(hund \mid e_{i})} \sum_{j=1}^{3} \delta(hund, f_{j}) \sum_{i=0}^{3} \delta(dog, e_{i}) = \\ \frac{0.615385}{0.588235 + 0.615385 + 0.6666667 + 0.615385} \times 2 \times 2 = ? \end{aligned}$$

		1 st iterat.	2nd iter.	5th iter.	25th iter	100th
0	hund	0.588235				
0	bet	0.176471				
0	bjeffet	0.235294				
dog	hund	0.615385				
dog	bet	0.230769				
dog	bjeffet	0.153846				
bit	hund	0.666667				
bit	bet	0.333333				
barked	hund	0.5				
barked	bjeffet	0.5				

		1 st iterat.	2nd iter.	5th iter.	25th iter	100th
0	hund	0.588235	0.647158			
0	bet	0.176471	0.14363			
0	bjeffet	0.235294	0.209212			
dog	hund	0.615385	0.675859			
dog	bet	0.230769	0.237614			
dog	bjeffet	0.153846	0.086527			
bit	hund	0.666667	0.609848			
bit	bet	0.333333	0.390152			
barked	hund	0.5	0.342932			
barked	bjeffet	0.5	0.657068			

		1 st iterat.	2nd iter.	5th iter.	25th iter	100th
0	hund	0.588235	0.647158	0.81929		
0	bet	0.176471	0.14363	0.067291		
0	bjeffet	0.235294	0.209212	0.113419		
dog	hund	0.615385	0.675859	0.773893		
dog	bet	0.230769	0.237614	0.214793		
dog	bjeffet	0.153846	0.086527	0.011313		
bit	hund	0.666667	0.609848	0.417491		
bit	bet	0.333333	0.390152	0.582509		
barked	hund	0.5	0.342932	0.097766		
barked	bjeffet	0.5	0.657068	0.902234		

		1 st iterat.	2nd iter.	5th iter.	25th iter	100th
0	hund	0.588235	0.647158	0.81929	0.998457	
0	bet	0.176471	0.14363	0.067291	0.000122	
0	bjeffet	0.235294	0.209212	0.113419	0.001421	
dog	hund	0.615385	0.675859	0.773893	0.947458	
dog	bet	0.230769	0.237614	0.214793	0.052541	
dog	bjeffet	0.153846	0.086527	0.011313	0	
bit	hund	0.666667	0.609848	0.417491	0.005351	
bit	bet	0.333333	0.390152	0.582509	0.994648	
barked	hund	0.5	0.342932	0.097766	6.0e-07	
barked	bjeffet	0.5	0.657068	0.902234	0.999999	

		1 st iterat.	2nd iter.	5th iter.	25th iter	100th
0	hund	0.588235	0.647158	0.81929	0.998457	1
0	bet	0.176471	0.14363	0.067291	0.000122	0
0	bjeffet	0.235294	0.209212	0.113419	0.001421	0
dog	hund	0.615385	0.675859	0.773893	0.947458	0.966031
dog	bet	0.230769	0.237614	0.214793	0.052541	0.033968
dog	bjeffet	0.153846	0.086527	0.011313	0	0
bit	hund	0.666667	0.609848	0.417491	0.005351	0
bit	bet	0.333333	0.390152	0.582509	0.994648	1
barked	hund	0.5	0.342932	0.097766	6.0e-07	0
barked	bjeffet	0.5	0.657068	0.902234	0.999999	1

Results (perplexitiy)

- Claim: «the numbers converge towards better results»
- Means: for each round

 $\prod_{(\mathbf{e},\mathbf{f})} P(\mathbf{f} \mid \mathbf{e})$

does not decrease

 For IBM Model 1 it may be proved that they converge towards a global optimum

Today

\Box Repetition:

Statistical machine translation:
 The noisy channel model

 IBM model 1
 Training the intuitive way

 Training — the fast way
 Higher IBM-models

IBM model 2

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = P(m | \mathbf{e}) \prod_{j=1}^{m} P(a_j | a_1^{j-1}, f_1^{j-1}, m, \mathbf{e}) P(f_j | a_1^j, f_1^{j-1}, m, \mathbf{e})$$

□ New

$$P(a_j | a_1^{j-1}, f_1^{j-1}, m, \mathbf{e}) = a(a_j | j, m, k)$$

For a probaility distribution a

■ i.e. it depends on the length of the string and the position

(less likely to move far than to stay close)

□ As for Model1

- $\square P(m | \mathbf{e}) \text{ is a constant, independent of } m \text{ and } E$
- the word translation probability only depends on source word $P(f_j | a_1^j, f_1^{j-1}, m, \mathbf{e}) = t(f_j | e_{a_j})$

Model2

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \varepsilon \prod_{j=1}^{m} a(a_j | j, m, k) t(f_j | e_{a_j})$$

- We can do similar steps as for Model1 for expressing P(f | e) and P(a).
- We can do similar simplifications to bypass the exponential number of alignments, and
- Learn the alignment probabilities a(a_i | j,m,k) at the same time as the translation probabilities
- You don't have to learn the details

HMM Alignment

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = P(m | \mathbf{e}) \prod_{j=1}^{m} P(a_j | a_1^{j-1}, f_1^{j-1}, m, \mathbf{e}) P(f_j | a_1^j, f_1^{j-1}, m, \mathbf{e})$$

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = P(m | k) \prod_{j=1}^{n} P(a_j | a_1^{j-1}, k) t(f_j | e_{a_j})$$

- $\square P(m | k)$ depends on the length k of e.
- □ $P(a_j | a_1^{j-1}, f_1^{j-1}, m, \mathbf{e}) = P(a_j | a_{j-1}, k) = \lambda c(a_j a_{j-1})$ □ Where word j should come from, depends on where
 - word j-1 came from
 - This is again reduced to probabilities, c, of the distance between a_i and a_{i-1} independently of the actual j.

Model 1 & 2 and HMM alignment

IBM Model 3: Fertility

Fertility: number of F words produced by an E word
 Modelled by a distribution n(x|e)

Example: F = Norw. n(2 | yesterday) \approx 1 n(1 | to) \approx 0.8 n(2 | to) \approx 0.2 n(1 | car) \approx 1 n(0 | the) \approx 0.6 n(1 | the) \approx 0.4

Example: Norw. \rightarrow Eng. n(2 | bilen) ≈ 0.7 n(1 | bilen) ≈ 0.3 n(1 | å) ≈ 0.8 n(0 | å) ≈ 0.2

IBM Model 3: Null insertion

- □ Modelled by:
- □ There is a probability p0:
 - After each inserted word there is the probability p0 of not inserting a null-word
 - And a probability p1 = (1-p0) of inserting a null-word
- A rather complex expression for what this contributes into P(a, f | e) which considers
 - Permutations
 - Length of f

IBM Model 3: Distortion

$d(j \,|\, a_j, m, k)$

- □ A probability distribution which gives the probability of word a_i ending up in position *j*.
- □ Similar to alignment in model 2 but:
 - Oposite direction
 - Different choices of words + distortion may correpsond to the same alignment

IBM model 3

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \prod_{j=1}^{m} t(f_j | e_{a_j}) \prod_{j=1}^{m} d(j | a_j, k, m) \times \text{ more}$$

- Where more is an expression which counts
 n(x | e_i) the right number of times
 And uses p0 to give the right probability to null
 - insertion.

Training Model 3

- □ In principle like Model 1, but
 - The trick to get rid of the alignments does not work
 Too costly to calculate all alignments
- Strategy
 - Sample and use the most probable alignments
 - Start with alignments for Model 1 and Model 2
 - Use hill-climbing algorithm

Hill-climbing algorithm

- □ Assign some initial parameter values
- Consider several alternative sets of parameter values in the vicinity of where you are
- Compare the resulting values and choose the parameters which yield the best results
- Repeat

Training model 3

- □ Model 1: The optimum we find is global
- \square Model 3 (and model 2):

A local optimum does not have to be global

- First run some iterations of Model1 and maybe some iterations of Model 2
- Use the results, in particular the alignment, as input to Model 3
- Hill-climb the space of alignments from here, doing minimal changes.

IBM Model 4

- Better reordering model
- □ Consider group of words (phrases)
- Distinguish between
 - the placement of the whole group
 - The placement within the group

The IBM-models

- □ IBM models 1-4 are not true probability models.
- Model 5 fixes this
 - Based on model 4
- $\hfill\square$ We will not consider models 4 and 5
- Phrase Based translation makes use of Model 3