INF5820/INF9820

LANGUAGE TECHNOLOGICAL APPLICATIONS

1

Jan Tore Lønning, Lecture 8, 12 Oct. 2016 jtl@ifi.uio.no

Today

- Preparing bitext
- Parameter tuning
- Reranking
- □ Some linguistic issues

STMT so far

- We have seen all the main elements of a phrasebased STMT-system:
 - The model
 - How to train it
 - Decoding
- For actually building a system, we will use some tools implementing this model, e.g. Moses
- Remains some details at both ends
 - Start: Preprocessing
 - End: Tuning

Preprocessing

- (Exercise 4.1) Which preparations must be done to a training corpus to make it suitable for training an SMT system?
- Clean up text
 - Character encoding
 - Mark-up (XML, html)
- Tokenization
 - Why?

Preprocessing: casing

- □ Case folding (downcasing) or not?
 □ The city is large. → the city is large .
 □ Washington is large. → washington is large .
- □ Why not?
 - Mary met Smith and Browne → mary met smith and browne
 - Adding ambiguity
 - Translating proper names wrongly

Alternative: true casing

What

- lacksquare The city is large. ightarrow the city is large .
- \square Washington is large. \rightarrow Washington is large .

□ How?

- Use model on corpus
- □ Remaining problem: beginning of sentence
 - **Browne** met Smith \rightarrow ?
 - **\square** Green men entered the room \rightarrow
 - Cannot always do right. But true casing is best alternative.

Sentence align the source and target

- □ Assume two parallel texts which are split into sentences
 - E: e1, e2, ..., en
 - □ F: f1, f2, ..., fm
 - Not necessarily equally many
- □ Task: organize E and F into equally many segments
 - E: E1, E2, ..., Ek
 - F: F1, F2, ..., Fk
 - Where Ei corresponds to Fi
 - **\square** Ei consists of some consecutive sentences: $e_{i'}, e_{i+1}, \dots, e_{i+s}$
 - **D** Similarly for Fi: f_k , fk_{+1} , ..., f_{k+u}
 - Ei and Fi are minimal:
 - There is no sub segment Ei' of Ei and Fi' of Fi such that Ei' and Fi' correspond and Ei'=/=Ei or Fi'=/=Fi

Sentence alignment continued

□ Sentence pairs:

- x many sentences in Ei, y many sentences in Fi
- Then call Ei-Fi an x-y pair
- 1-1pair: Good for training
- 1 0 pair or 0 1 pair: Ignore for training

 \square 1 – 2 or 2 – 1 pairs. Might be considered for training.

- □ How to identify sentences?
 - Sentence length
 - Word pairs from dictionary

- Preparing bitext
- Parameter tuning
- Reranking
- □ Some linguistic issues

The generative SMT-model

- □ Adding weights:
 - Koehn, lecture 5, Slide 17-21

How to tune weights?

- Make an original system, SO, using a parallel corpus, C1, for the phrase table.
- 2. Use a distinct small parallel corpus, C2. (dev set)
- 3. Produce several SO-translations for each f-sentence in C2.
 - n-best list (n=100, 1000, 10000)
- 4. Use a method for scoring the candidate translations in C2.
 - (typically modified BLEU-score).
- 5. Try to adjust the weights to bring the best candidates in (4) towards top of list.
- 6. Make new system with adjusted weights.
- 7. Repeat from 3 towards convergence.

Learning task

 Task: find weights, so that feature vector of the correct translations ranked first

	TRANSLATION	LM	TH	MD-	SER	
1	Mary not give slap witch green .	-17.2	-5.2	-7	1	
2	Mary not slap the witch green .	-16.3	-5.7	-7	1	
3	Mary not give slap of the green witch .	-18.1	-49	-9	1	
4	Mary not give of green witch .	-16.5	-5.1	-8	1	
	Mary did not slap the witch green .	-20.1	-47	-8	1	
6	Mary did not slap green witch .	-15.5	-3.2	-7	1	
7	Mary not slap of the witch green .	-19.2	-5.3	-8	1	
	Mary did not give slap of witch green .	-23.2	-5.0	-9	1	
	Mary did not give slap of the green witch .	-21.0	-44	-10	1	
10	Mary did slap the witch green .	-15.5	-6.9	-7	1	
11	Mary did not slap the green witch .	-17.4	-5.3	-8		
12	Mary did slap witch green .	-16.9	-6.9	-6	1	
13	Mary did slap the green witch .	-14.3	-7.1	-7	1	
1.4	Mary did not slap the of green witch .	-24.2	-5.3	-9	1	
1.5	Mary did not give slap the witch green .	-25.2	-5.5	-9	1	
rank	t translation feature vector			tor		

Koehn, U Edinburgh

How to? (sec. 9.3)

5. Try to adjust the weights to bring the best candidates in (4) towards top of list.

- □ No analytic solution
 - We can't differentiate a function and find zero values
- □ Take 1: try systematically, say
 - λ_{LM}= .1, .2, .3, ..., .9
 - $\lambda_{\phi} = .1, .2, ..., .9 \lambda_{LM} = \lambda_{LM}$
 - $\lambda_{\rm D} = = .1, .2, ..., 1 (\lambda_{\rm LM} + \lambda_{\phi})$
 - Too many values to try out
 - Small changes in λs, large effect on result:
 - The steps are too large

Take 2: Powell search

- \square Optimize one $\lambda_{\text{,}}$ say λ_{LM} , keeping the other fixed.
- \square With this value for λ_{LM} , optimize the next λ , etc.
- \square A method for searching for the best value for each λ

Take 3:

- alternative) Simplex algorithm
- Variants of "hill climbing"

- □ Read sec 9.3
 - Not the details of
 - Finding threshold points
 - Combining threshold points
 - in sec 9.3.2
 - Not 9.3.3 Simplex

Will the solutions be global?

Today

- Preparing bitext
- Parameter tuning
- Reranking
- □ Some linguistic issues

Reranking model for SMT

Translation in two steps

- Use a STMT-system as we have seen so far
 - Output: A set of translation candidates
- Use the reranker to rank the outputs and select between them
 - Discriminative model

Statistical models

Generative model

- Construct solutions and assign them probabilities
- Examples
 - PCFG:
 - Assign trees
 - Probabilities to the trees
 - HMM-tagger
 - Produce tag-sequences w/probabilities
 - The translation models, both IBM and phrasebased

Discriminative model

- Starts with a set of solutions
- Select between them on the basis of a statistical score
- □ Example:
 - Malt parser

The reranker

- □ Consider it as a classification problem
- Supervised learning
- □ Training material:
 - A set of sentences in source language
 - One or more reference translations of these
 - Output of the STMT-system for these sentences
- □ Choose learning goal:
 - (A way to evaluate the output sentences)
 - Typically modified BLEU (or NIST) score

The reranker - learning

- Choose features
- Choose a learning strategy:
 - Naïve Bayes
 - Maximum entropy
 - (INF5830)
 - Skip here 9.2.4
 - Etc.
- The result is a ranker which if we have succeeded -will return a reordered list where the top element has a better score than the top element before reranking
- \Box Observe:
 - This is machine learning
 - The resulting reranker will not always improve the results

Reranking vs Tuning

- What is the difference between
 - Tuning and
 - Reranking?

Reranking vs Tuning

- Tuning is part of the training of the original STMTsystem.
- Tuning is applied to make an optimal translation system
- □ Reranking is part of a full MT-pipeline..
- \Box It is part of the decoding.
- It is applied to each sentence after the beam decoder has made an *n*-best list.

Today

- Preparing bitext
- Parameter tuning
- Reranking
- □ Some linguistic issues

SMT + Linguistic Information

- Transliteration
- □ Compounds
- Names
- Morphology
- Word order and syntax

Translating numbers

- □ How should a STMT system translate 12356?
- □ Most likely: It hasn't seen the number before.
- But since it translates into itself:
 - one possible solution:
 - Remove the number before translation, replace it by some dummy (say NNNN)
 - Insert the number after translation
 - (A default of not translating unseen tokens would give the same result)

Transliteration

- But the numbers are not exactly the same even in closely related languages
- Solution: Specific modules
 - Translate specific phenomena
 - Taken out of the regular SMT

Transliteration - names

- How should names in Japanese or Russian be spelled in English?
 - The book describes recipes for doing this statistically(sec. 10.1)
 - We will not consider this

Compounds

- German, Norwegian
 - samhandlingsreform
 - snøskredfare
- English
 - word segmentation
 - cruising speed
- Phrase-based SMT better than word-based
- New compounds/sparse data still a challenge
- Compound splitting in source language may help
- But how to put Humpty Dumpty together again?
 (when going to German or Norwegian)

Compounds in LOGON

□ A set of possible templates:

$$\square N_1 N_2 \rightarrow Ad_1 N_2$$

$$\square N_1 N_2 \rightarrow N_2 \text{ of } N_1$$

etc.

- □ Generate all possible transfer rules
 - \blacksquare from basic transfer rules for N_1 and N_2
 - from dictionary
 - (order of n*n)
- □ Filter against monolingual target corpus
- Possible improvement: Turn into a probabilistic model

Translating names

- Which names should be translated and which not?
- □ How?
 - Oslofjorden
 - Rondane
 - Statens lånekasse for utdanning
 - Sognefjellesveien

- Sognefjellsveien
- the Sognefjellsveien
- Sognefjell Road
- the Sognefjell Road
- Sogn Mountain Road
- the Sogn Mountain Road
- the Parish Mountain Road

Translating names

□ Difficult to specify a recipe that fits all.