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Statistical learning

Goal

Find the best (most probable) English translation Ê of a
foreign sentence F .
Ê = arg max

E
P(E | F )

3 steps (common to many tasks)
1 A model. We may not have seen F before. The model will

determine what to look for.
2 We must learn (or estimate) the parameters of the model

from data.
3 We must have a method for using the model to find the

best E given F , decoding.
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Noisy channel models

Applying Bayes’ formula
Ê = arg max

E
P(E | F )

= arg max
E

P(F | E)

P(F )
P(E)

= arg max
E

P(F | E)P(E)

Turning the picture: consider F as a translation (distortion)
of E , and ask which E?
Why?

Suitable for approximations.
Makes use of language model P(E).

cf. K:SMT slide 34
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Noisy channels

The noisy channel model
See a distortion of the original.
Goal: guess the original
J&M Fig. 5.23, 9.2 og 25.15

Example
Speech recognition: Sounds a distortion of writing.
Tagging: Word sequence distortion of tag sequence
Translation: Source language a distortion of target
language.
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Separating the models

Starting point:

Ê = arg max
E

P(F | E)P(E)

The models
We can build and train two separate models:

The language model: P(E)
The translation model: P(F | E)

Decoding must use both models simultaneously
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Language model

Goal
Estimate the probability P(E) = P(e1e2 . . . en) of the string of
words e1e2 . . . en

n-gram model

P(e1e2 . . . en)

= P(e1)P(e2 | e1)P(e3 | e1,e2) · · ·P(en | e1e2 . . . en−1)

≈ P(e1)P(e2 | e1)P(e3 | e2) · · ·P(en | en−1)

= P(e1)
n−1∏
i=1

P(ei+1 | ei)
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Comments:

Uses the (incorrect) Markov-assumption
P(e(j+1) | e1e2 . . . ej) ≈ P(ej+1 | ej)

Last slide shows the bigram model. Could alternatively use
trigram, quadgram, . . .
Trigram: P(e1e2 . . . en) =

∏n−1
i=1 P(ei+1 | ei−1,ei)

For all n-grams : special symbols for start and end:
What is the probability of being the first word of a sentence?
What is the probability of being the last word of a sentence?
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The translation model

Several alternatives:
Word based

In particular the IBM-models: 1, 2, 3, 4, 5
Phrase based

Parameter estimation often done on top of a word-based
model.

Syntax based
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Word-based models

Suppose
Source and target sentence always the same length
Word-order is preserved.
A one-to-one correspondence between words

The translation would be like HMM-tagging
Translation Tagging
source language word word
target language word tag
n-grams for targ. lang. n-grams of tags
source sentence sentence to be tagged
word translation probs. probability for word given tag

See simplified SMT example on slides from first MT
lecture.
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Word-based translation models

But translation reorders, deletes, adds, goes many-to-one,
one-to-many and many-to-many.
We cannot apply HMM directly

Two parts to word-based translation
1 What is the probability that source word a is translated as

target word b?
2 Alignment: Which word(s) in the target language sentence

is the translation of which word(s) in the source sentence?

J& M Figure 25.17, 25.20, 25.21, 25.22
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