INF5820/INF9820
LANGUAGE TECHNOLOGICAL APPLICATIONS
2016 fall

Exercises

\square Khan academy

- http://www.statlect.com/probability exercises.htm
- Probability
- Conditional probability
\square Bayes' rule
\square Independent events
\square S 1, videregående skole:
- http://ndla.no/nb/node/57934

Basic concepts

\square Random experiment (or trial) (no: forsøk)

- Observing a chance event
\square Outcomes (utfallene)
\square The possible results of the experiment
\square Sample space (utfallsrommet)
- The set of all possible outcomes

Examples

$\left.\begin{array}{|l|l|l|}\hline & \text { Experiment } & \text { Sample space, } \Omega \\ \hline 1 & \text { Flipping a coin } & \{\mathrm{H}, \mathrm{T}\} \\ \hline 2 & \text { Rolling a dice } & \{1,2,3,4,5,6\} \\ \hline 3 & \text { Flipping a coin three times } & \{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH}, \\ & & \text { THT, TTH, TTT }\}\end{array}\right\}$

Examples

	Experiment	Sample space, Ω
1	Flipping a coin	$\{\mathrm{H}, \mathrm{T}\}$
2	Rolling a dice	$\{1,2,3,4,5,6\}$
3	Flipping a coin three times	$\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH}$, $\mathrm{THT}, \mathrm{TH}, \mathrm{TTT}\}$
4	Will it rain tomorrow?	$\{\mathrm{Yes}, \mathrm{No}\}$
5	The first word you hear tomorrow	$\{\mathrm{u} \mid \mathrm{u}$ is a word $\}$
6	Throwing a dice until you get 6	$\{1,2,3,4, \ldots\}$
7	The maximum temperature at Blindern for a day	$\{\dagger \mid \dagger$ is a real $\}$

Discrete		Continuous
Finite	Infinite	Infinite
$1-4$	6	7

Event

\square An event (begivenhet) is a set of elementary outcomes

	Experiment	Event	Formally
2	Rolling a dice	Getting 5 or 6	$\{5,6\}$
3	Flipping a coin three times	Getting at least two heads	$\{H H H$, HHT, HTH, THH $\}$

Event

\square An event (begivenhet) is a set of elementary outcomes

	Experiment	Event	Formally
2	Rolling a dice	Getting 5 or 6	$\{5,6\}$
3	Flipping a coin three times	Getting at least two heads	$\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
$\mathbf{5}$	The first word you hear tomorrow	You hear a noun	$\{\mathrm{U} \mid \mathrm{u}$ is a noun $\}$
$\mathbf{6}$	Throwing a dice until you An odd number of get 6	$\{1,3,5, \ldots\}$	
$\mathbf{t h r o w s}$The maximum temperature at Blindern	Between 20 and 22	$\{\dagger \mid 20 \leq \dagger \leq 22\}$	

Operations on events

\square Union: $\mathrm{A} \cap \mathrm{B}$
\square Intersection (snitt): $A \cap B$
\square Complement
\square Venn diagram

- http://www.google.com/doodles/iohn-venns-180th-birthday

Probability measure, sannsynlighetsmå|

\square A probability measure P is a function from events to the interval $[0,1]$ such that:

1. $P(\Omega)=1$
2. $P(A) \geq 0$
3. If $A \cap B=\varnothing$ then $P(A \cup B)=P(A)+P(B)$

- And if A1, A2, A3, ... are disjoint, then ${ }^{P}\left(\bigcup_{j-1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} P\left(A_{j}\right)$

Examples

\square An event (begivenhet) is a set of elementary outcomes

	Experiment	Event	Probability
2	Rolling a dice	Getting 5 or 6	$\mathrm{P}(\{5,6\})=2 / 6=1 / 3$
3	Flipping a coin three times	Getting at least two heads	$\mathrm{P}(\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\})=$ $4 / 8$

Examples

\square An event (begivenhet) is a set of elementary outcomes

	Experiment	Event	Probability
2	Rolling a dice	Getting 5 or 6	$\mathrm{P}(\{5,6\})=2 / 6=1 / 3$

Distribution of universal POS in Brown

Some observations

$\square P(\varnothing)=0$
$\square P(A \cup B)=P(A)+P(B)-P(A \cap B)$
\square If Ω is discrete, then $P(A)=\sum_{a \in A} P(\{a\})$

Examples

6-sided fair dice

- Two throws: the probability of 2 sixes?
- The probability of getting a six in two throws?
$\square 5$ dices: the probability of getting 5 equal dices?
$\square 5$ dices: the probability of getting 1-2-3-4-5?
$\square 5$ dices: the probability of getting no 6-s?

Counting methods

Given all outcomes equally likely
$\square \mathrm{P}(\mathrm{A})=$ number of ways A can occur/ total number of outcomes
\square Mutiplication principle:
if one experiment has m possible outcomes and another has n possible outcomes, then the two have mn possible outcomes

Sampling

Ordered sequences:
\square Choose k items from a population of n items with replacement: n^{k}
\square Without replacement (permutation):

- : $n(n-1)(n-2) \ldots(n-k+1)=\frac{n!}{(n-k)!}$

Unordered sequences
\square Without replac.: $\frac{1}{k!}\left(\frac{n!}{(n-k)!}\right)=\left(\frac{n!}{k!(n-k)!}\right)=\binom{n}{k}$

- = the number of ordered sequences/

The number of ordered sequences containing the same k elements

Conditional probability

$\square \mathrm{P}(\mathrm{A} \cap \mathrm{B})$
\square Both A and B happens
\square Conditional probability (betinget sannsynlighet)

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- The probability of A happens if B happens
\square Multiplication rule $P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)$
$\square A$ and B are independent iff $P(A \cap B)=P(A) P(B)$

Example

\square Throwing two dice

- A: the sum of the two is 7
- B: the first dice is 1
- $P(A)=6 / 36=1 / 6$
- $P(B)=1 / 6$
- $P(A \cap B)=P(\{(1,6)\})=1 / 36=P(A) P(B)$
\square Independence
- C: the sum of the two is 5
- $P(C)=4 / 36=1 / 9$
- $P(C \cap B)=P(\{(1,4)\})=1 / 36$
- $P(C) P(B)=1 / 9 * 1 / 6=1 / 54$

■ Not independent

Bayes theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

\square Jargon:
$\square P(A)$ - prior probability

- $P(A \mid B)$ - posterior probability
\square Extended form

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid-A) P(-A)}
$$

Example

\square Disease: 1 out of 1000 are infected
\square Test:

- Detects 99% of the infected
- 2% of the non-infected get a positive test
\square Given a positive test: what is the chance you are ill?

What are probabilities?

\square Example throwing a dice:

1. Classical view:

- The six outcomes are equally likely

2. Frequenist:

- If you throw the dice many, many, many times, the number of 6 s approach 16.6666...\%

3. Bayesian: subjective beliefs
