INF5820/INF9820
LANGUAGE TECHNOLOGICAL APPLICATIONS
2016 fall

2
 Probabilifies 2

Today

\square Some maths:

- Notation for sums and products
- Exponential function and logarithms
\square More on probabilities
- Conditional probabilities and Bayes' formula
- Random variables
- Probability distributions - binomial distribtuion

Notation

$\square \sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$
$\square \sum_{i=1}^{7} i=1+2+3+4+5+6+7=28$
$\square \sum_{i=2}^{5} i^{2}=4+9+16+25=54$
$\square \prod_{i=1}^{n} a_{i}=a_{1} * a_{2} * a_{3} * \ldots * a_{n}$
$\square \prod_{i=1}^{7} i=1 * 2 * 3 * 4 * 5 * 6 * 7=7!=5040$

Exponentiation

\square Assume $a, b>0$
$\square a^{m} \cdot a^{n}=a^{(m+n)}$
$\square a^{-m}=\frac{1}{a^{m}}$
$\square\left(a^{m}\right)^{n}=a^{(m \cdot n)}$
$\prod_{i=1}^{n} a^{b_{i}}=a^{\left(\sum_{i=1}^{n} b_{i}\right)}$
$\square a^{\left(\frac{1}{n}\right)}=\sqrt[n]{a}$ because
$\square\left(a^{\left(\frac{1}{n}\right)}\right)^{n}=a^{\left(\frac{1}{n} \cdot n\right)}=a$

Exponential function

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
1	2	4	8	16	32	64	128	256	512	1024

$\square 2^{n}$ for $n=0,1,2, \ldots$
\square Extends to $f(x)=2^{x}$ for $x \in R$
\square Also $f_{a}(x)=a^{x}$ for any $a>0$

Logarithms

\square When $y=a^{x}$
$\square x=\log _{a} y$

$$
\prod_{i=1}^{n} x_{i}=\prod_{i=1}^{n} a^{\log x_{i}}=a^{\left(\sum_{i=1}^{n} \log x_{i}\right)}
$$

\square Inverse function of exp
$\square a^{\log _{a} x}=x$
■ $x \cdot y=a^{\log x} \cdot a^{\log y}=$ $a^{(\log x+\log y)}$

Today

\square Some maths:

- Notation for sums and products
- Exponential function and logarithms
\square More on probabilities
- Conditional probabilities and Bayes' formula
- Random variables
- Probability distributions - binomial distribtuion

Basic concepts

\square Random experiment (or trial) (no: forsøk)

- Observing a chance event
\square Outcomes (utfallene)
\square The possible results of the experiment
\square Sample space (utfallsrommet)
- The set of all possible outcomes

Event

\square An event (begivenhet) is a set of elementary outcomes

	Experiment	Event	Formally
2	Rolling a dice	Getting 5 or 6	$\{5,6\}$
3	Flipping a coin three times	Getting at least two heads	$\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
$\mathbf{5}$	The first word you hear tomorrow	You hear a noun	$\{\mathrm{U} \mid \mathrm{u}$ is a noun $\}$
$\mathbf{6}$	Throwing a dice until you An odd number of get 6	$\{1,3,5, \ldots\}$	
$\mathbf{t h r o w s}$The maximum temperature at Blindern	Between 20 and 22	$\{\dagger \mid 20 \leq \dagger \leq 22\}$	

Probability measure, sannsynlighetsmål

\square A probability measure P is a function from events to the interval $[0,1]$ such that:

1. $P(\Omega)=1$
2. $P(A) \geq 0$
3. If $A \cap B=\varnothing$ then $P(A \cup B)=P(A)+P(B)$

- And if A1, A2, A3, ... are disioint, then ${ }^{P}\left(\bigcup_{j-1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} P\left(A_{j}\right)$

Conditional probability

$\square \mathrm{P}(\mathrm{A} \cap \mathrm{B})$
\square Both A and B happens
\square Conditional probability (betinget sannsynlighet)

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- The probability of A happens if B happens
\square Multiplication rule $P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)$
$\square A$ and B are independent iff $P(A \cap B)=P(A) P(B)$

Bayes theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

\square Jargon:

- $P(A)$ - prior probability
- $P(A \mid B)$ - posterior probability
\square Extended form

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid-A) P(-A)}
$$

Example

\square Disease: 1 out of 1000 are infected
\square Test:

- Detects 99% of the infected
- 2% of the non-infected get a positive test
\square Given a positive test: what is the chance you are ill?

What are probabilities?

\square Example throwing a dice:

1. Classical view:

- The six outcomes are equally likely

2. Frequenist:

- If you throw the dice many, many, many times, the number of 6 s approach 16.6666...\%

3. Bayesian: subjective beliefs

Today

\square Some maths:

- Notation for sums and products
- Exponential function and logarithms
\square More on probabilities
- Conditional probabilities and Bayes' formula
- Random variables
- Probability distributions - binomial distribtuion

Random variable

\square A variable X in statistics is a property (feature) of an outcome of an experiment.

- Formally it is a function from a sample space (utfallsrom) Ω to a value space Ω_{x}.
\square When the value space Ω_{x} is numeric (roughly a subset of R^{n}), it is called a random variable
\square There are two kinds:
- Discrete random variables
- Continuous random variables
\square A third type of variable: categorical variable, when Ω_{x} is nonnumeric
- Motivation for talking about random variables:
- It is convenient to consider mathematical concepts, e.g. mean and variance
- We can study their distribution abstracting away from what the actual outcomes

Examples

1. Throwing two dice,

- $\Omega=\{(1,1),(1,2), \ldots(1,6),(2,1), \ldots(6,6)\}$

1. The number of $6 s$ is a random variable $X, \Omega_{X}=\{0,1,2\}$
2. The number of 5 or $6 s$ is a random variable $Y, \Omega_{Y}=\Omega_{X}$
3. The sum of the two dice, $Z, \Omega_{\mathrm{Z}}=\{2,3, \ldots, 12\}$
4. A random person:
5. X, the height of the person $\Omega_{x}=[0,3]$ (meters)
6. Y, the gender $\Omega_{Y}=\{0,1\}$ (1 for female)
\square Ex 2.1 is continuous, the other are discrete

Discrete random variable

- The value space is a finite or
a countable infinite set of numbers
$\{\times 1, \times 2, \ldots, x n, \ldots\}$
\square The probability mass function, pmf, p, which to each value yields
口 $p(x i)=p(X=x i)=P(\{\omega \in \Omega \mid X(\omega)=x\})$

\square The cumulative distribution function, cdf,
口 $F\left(x_{i}\right)=p\left(X \leq x_{i}\right)=P\left(\left\{\omega \in \Omega \mid X(\omega) \leq x_{i}\right\}\right)$

Examples

\square Throwing two dice,
ㅁ $\Omega=\{(1,1),(1,2), \ldots(1,6),(2,1), \ldots(6,6)\}$

- (1.3) The sum of the two dice, Z,

$$
\Omega_{z}=\{2,3, \ldots, 12\}
$$

- $p_{z}(2)=P(\{(1,1)\}=1 / 36$
- $p_{z}(7)=6 / 36$
- $F_{z}(7)=1+2+\ldots+6=21 / 36$
- (1.1) The number of $6 \mathrm{~s}, \Omega_{\mathrm{x}}=\{0,1,2\}$
- $p_{x}(2)=P(\{(6,6)\}=1 / 36$
- $p_{x}(1)=P(\{(6, x) \mid x \neq 6\}+$
$P(\{(x, 6) \mid x \neq 6\}=10 / 36$
- $\mathrm{px}(0)=25 / 36$

Mean - example

\square Throwing two dice, what is the mean value of their sum?

- (2+3+...+7+
$3+4+\ldots+8+$
4+... $+9+$
$5+\ldots \quad+10+$
6+... $+11+$
$7+\ldots \quad+12) / 36=$
ㅁ $\left(2+2 * 3+3 * 4+4 * 5+5 * 6+6 * 7+5 * 8+\ldots 2^{*} 11+12\right) / 36=$
- $(1 / 36) 2+(2 / 36) * 3+(3 / 36) * 4+\ldots+(1 / 36) * 12=$
$\square \mathrm{p}(2)^{*} 2+\mathrm{p}(3)^{*} 3+\mathrm{p}(4)^{*} 4+\ldots \mathrm{p}(12)^{*} 12=$
$\square \Sigma_{\mathrm{p}}(\mathrm{x})^{*} \mathrm{x}$

Mean of a discrete random variable

\square The mean (or expectation) (forventningsverdi) of a discrete random variable X :

$$
\mu_{X}=E(X)=\sum_{x} p(x) x
$$

\square Useful to remember

$$
\begin{aligned}
& \mu_{(X+Y)}=\mu_{X}+\mu_{Y} \\
& \mu_{(a+b X)}=a+b \mu_{x}
\end{aligned}
$$

Examples:
One dice: 3.5
Two dices: 7
Ten dices: 35

Today

\square Some maths:

- Notation for sums and products
- Exponential function and logarithms
\square More on probabilities
- Conditional probabilities and Bayes' formula
- Random variables
- Probability distributions - binomial distribution

Examples of distributions

- (1.3) The sum of the two dice, Z, i.e.

$$
\underset{\text {-tc }}{p_{\mathrm{z}}(2)}=1 / 36, \ldots, p_{\mathrm{z}}(7)=6 / 36
$$

\square (3.2) p_{2} given by:

- $p_{2}(7)=1$
- $p_{2}(x)=0$ for $x \neq 7$
\square (3.3) p_{3} given by:
- $p_{3}(x)=1 / 11$ for $x=2,3, \ldots, 12$

The three have the same mean but are very different

Think about

\square Flip a coin 10 times, count the number of heads
\square You expect 5 heads, but not exactly 5

- 6 is OK
\square When do you start to worry whether the coin is unfair?
- 8 heads?
- 9 heads?
\square This is the task for inferential statistics

Tossing a fair(?) coin

\square The cumulative distribution function:
"How likely is it to get N or fewer tails?'"

N	$\operatorname{pmf}(\mathrm{N})$	$\operatorname{cdf}(\mathrm{N})$
0	0.001	0.001
1	0.010	0.011
2	0.044	0.055
3	0.117	0.172
4	0.205	0.377
5	0.246	0.623
6	0.205	0.828
7	0.117	0.945
8	0.044	0.989
9	0.010	0.999
10	0.001	1.000

\mathbf{N}	1	4	16	64	256
σ^{2}	0.25	1	4	16	64
σ	0.5	1	2	4	8

\square The relative variation gets smaller with growing N
\square The pmf graph approaches a bell shape

Bernoulli trial

\square One experiment, two outcomes
$\square \Omega_{\mathrm{x}}=\{0,1\}$
\square Write p for $\mathrm{p}(1)$
\square Then $p(0)=1-p$

Examples:

- Flipping a fair coin, $p=1 / 2$
- Rolling a dice, getting a $6, p=1 / 6$
\square The mean/expectation: $0 * p(0)+1 * p(1)=0+p=p$

Sampling

Ordered sequences:
\square Choose k items from a population of n items with replacement: n^{k}
\square Without replacement (permutation):

- : $\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\mathrm{k}+1)=\frac{n!}{(n-k)!}$

Unordered sequences
\square Without replac.: $\frac{1}{k!}\left(\frac{n!}{(n-k)!}\right)=\left(\frac{n!}{k!(n-k)!}\right)=\binom{n}{k}$

- = the number of ordered sequences/

The number of ordered sequences containing the same k elements

Binomial distribution

- Binomial distribution (binomisk fordeling)
\square Conducting n Bernoulli trials with the same probability and counting the number of successes
\square Example flipping a fair coin n times, $p(k)$:
- $n=2: p(0)=1 / 4, p(1)=1 / 2, p(2)=1 / 4$
- $n=3: p(0)=1 / 8, p(1)=3 / 8, p(2)=3 / 8, p(3)=1 / 8$
- $n=4:(1,4,6,4,1) / 16$

ㅁ $n=5:(1,5,10,5,1) / 32$
$\square \mathrm{n}:$

$$
p(k)=\binom{n}{k}\left(\frac{1}{2}\right)^{n} \quad \text { where } \quad\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Binomial distribution

\square Binomial distribution (binomisk fordeling)
\square General form:

- $0<p<1$
$\square \mathrm{n}$ a natural number
$\square \mathrm{B}(\mathrm{n}, \mathrm{p})$ is given by $\quad b(k ; n, p)=\binom{n}{k} p^{k}(1-p)^{(n-k)}$
for $\mathrm{k}=0,1, \ldots \mathrm{n}$, where $\quad\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Binomial distribution

Wahrscheinlichkeit

- $n=20$
$\square \mathrm{p}=0.1$ (blue), $\mathrm{p}=0.5$ (green) and $\mathrm{p}=0.8$ (red)

