INF5820, Fall 2018
Assignment 1: Neural Classification with Bags
of Words

UiO Language Technology Group
Deadline 14 Sep., at 23:59, to be delivered in Devilry

Goals

1. Learn how to use the Abel HPC cluster to train deep learning models.
2. Get familiar with the Keras library

3. Learn how to use Keras to train and evaluate neural classifiers in NLP
tasks.

Introduction

This is the first obligatory assignment in the INF5820 course, Fall 2018. It is
comparatively small and aims at introducing you to the basics of neural network
approaches to classification tasks in natural language processing. In it, you will
implement a document classifier based on a simple feed-forward neural network,
using bags-of-words as features. Primary and recommended machine learning
framework in this course is Keras with TensorFlow as a backend. These are
provided out-of-the-box in the LTG environment on the Abel clustelﬂ and we
strongly encourage you to train your models using Abel. If you would like to
use any other deep learning software library, it is absolutely allowed, provided
that you implement your own classifier, not simply take an off-the-shelf tool,
and that your code is available.

Please make sure you read through the entire assignment before you start.
Solutions must be submitted through Devilryﬂ by 23:59 on September 14. Please
upload a single PDF file with your answers. Your (heavily commented) code
and data files should be available in a separate private repository in the UiO
in-house Git platfor Make the repository private, but allow full access to
INF5820 teaching sta The PDF in Devilry should contain a link to your
repository. If you have any questions, please raise an issue in the INF5820 Git
repositor or email inf5820-help@ifi.uio.no. Make sure to take advantage of
the group sessions on August 30 and September 6.

Thttps://www.uio.no/studier/emner/matnat/ifi/INF5820/h18/setup.html
%https://devilry.ifi.uio.no/

Shttps://github.uio.no/

4https://github.uio.no/orgs/inf5820/people
Shttps://github.uio.no/inf5820/course2018/issues


https://www.uio.no/studier/emner/matnat/ifi/INF5820/h18/setup.html
https://devilry.ifi.uio.no/
https://github.uio.no/
https://github.uio.no/orgs/inf5820/people
https://github.uio.no/inf5820/course2018/issues

Recommended reading

1. Neural network methods for natural language processing. Gold-
berg, Y., 2017[]

2. Speech and Language Processing. Daniel Jurafsky and James Martin.
3rd edition draft of August 12, 2018. Chapter 7, ‘Neural Networks and
Neural Language Models’ [Z] (sections 7.1, 7.2, 7.3 and 7.4)

Linear Algebra cheat sheet by the LTGE]
https://keras.io/

https://www.tensorflow.org/

S A

http://research.signalmedia.co/newsirl6/signal-dataset.html

1 Implementing a neural classifier

We will be working with the The Signal Media One-Million News Articles
Dataset, which contains texts from news sites and blogs from September 2015.
The dataset features several fields of metadata for each article, but in this as-
signment we will be interested only in one of them: the source of an article, i.e.,
from which news site it comes. This is a supervised classification task, since we
have gold labels for this field. You’ll have to implement a simple feed-forward
neural network which takes bag-of-words (BOW) text representations as input
and produces source predictions as an output, basically classifying the texts
based on their source. The task includes processing the text data to extract
BOW features, formatting these appropriately for the deep learning framework
you are using (most probably, Keras) and experimenting with the classifier hy-
perparameters to come to an optimal solution.
The assignment is divided into six parts:

. Data processing;
. Training a classifier;

. Feature tuning;

1

2

3

4. Hyperparameter tuning;
5. Measuring time efficiency;
6

. Evaluating the models.

You have to submit a written report of 2-4 pages to Devilry, which provides
details on your experiments and addresses the questions posed in the assignment.
Your code should be available in your Git repository (we remind that the official
programming language of the INF5820 course is Python ). The code must be
self-sufficient, meaning that it should be possible to run it directly on the data.
If you use some additional data sources, these datasets should be put in the
repository as well. If you use some non-standard Python modules, this should
be documented in your PDF report.

Shttps://www.morganclaypool.com/doi/10.2200/S00762ED1V01Y201703HLTO37
"https://web.stanford.edu/" jurafsky/slp3/7.pdf
Shttps://www.uio.no/studier/emner/matnat/ifi/INF5820/h18/timeplan/la.pdf


https://keras.io/
https://www.tensorflow.org/
http://research.signalmedia.co/newsir16/signal-dataset.html
https://www.morganclaypool.com/doi/10.2200/S00762ED1V01Y201703HLT037
https://web.stanford.edu/~jurafsky/slp3/7.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF5820/h18/timeplan/la.pdf

1.1 Data processing

We use the The Signal Media One-Million News Articles Dataset. In this as-
signment, you’ll have to work with a subset of it, containing articles from 10
news web sites (they are represented best in the main dataset):

1. MyInforms
2. Individual.com

4 Traders

- W

NewsR.in

ot

Reuters
Mail Online UK
App.ViralNewsChart.com

Latest Nigerian News.com

© »®» N @

Yahoo! Finance
10. Town Hall

These sites are different in their dominant topics and vision; thus, we expect that
the words used in their news articles would reflect these differences. Overall, this
corpus contains about 55 thousand articles and about 12 million word tokens.

The prepared dataset is available on the UiO Githulﬂ It is provided as a
gzipped tab-separated text file, with one line corresponding to one news article.
Data columns:

e source (class)
e text

The texts are already lemmatized and POS-tagged, and stop words are removed,
to make NLP tasks easier. Thus, a sentence ‘Satellite will play an important
role in the fight against illegal fishing’ is converted to ‘satellite. NN play VB
important_JJ role_ NN fight NN illegal JJ fishing NN’. Note that the Penn
Treebank tag set was used for part of speech tagginﬂ The documents are
shuffled, so there is no inherent order in the dataset.

We want to train a classifier which will be able to predict the source of a news
text based on the words used in it. For this, we need to somehow move from
documents as character sequences to documents as feature vectors that can be
fed to a machine learning algorithm, such as a feed-forward neural network. The
obvious way to do this is to represent all the documents as bags-of-words: that
is, extract the collection vocabulary (the union of all word types in the texts)
and count frequency of each word type in each document (or mark the binary
value of whether the word type appears in the document or not). Documents are
then represented as sparse vectors of the size equal to the size of the vocabulary.

9https://github.uio.no/inf5820/course2018/blob/master/obligatories/1/signal_
10_5820.tsv.gz
‘Yhttps://www.ling.upenn.edu/courses/Fall_2003/1ing001/penn_treebank_pos.html


https://github.uio.no/inf5820/course2018/blob/master/obligatories/1/signal_10_5820.tsv.gz
https://github.uio.no/inf5820/course2018/blob/master/obligatories/1/signal_10_5820.tsv.gz
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Machine learning classifiers can be trained on such data, which is what you are
going to do.

We provide the dataset as is, but before training you have to split it into
train, development and test parts, in the proportion of (80/10/10). You
can also use the Keras integrated option to automatically extract the devel-
opment/validation set. Make sure to keep the distribution of source labels as
similar as possible in all 3 subsets. Describe the process of splitting the dataset
in your PDF report in detail.

1.2 Training a classifier

We formulate our classification task as follows: given a list of words in a docu-
ment, predict the source of this document.
You must write the code which takes the provided dataset and:

e infers a common dictionary for all documents in the dataset;
e extracts bags of words for each document;

e extracts a list of gold source labels for the documents (for example, sources[i]
contains the source label for the iy, document);

e all this serves to prepare the data to be fed into a classifier.

Briefly describe this code in the report.

Then implement a fully-connected feed-forward neural network (multi-
layer perceptron) which trains on these bag-of-words features and evaluate it on
the development dataset (see the ‘Evaluation’ subsection below). For a start,
you can look at the classifier code discussed at the group session E Describe
the parameters of your network and the evaluation results in the PDF report.

1.3 Feature tuning

Try to experiment with feature tuning. Introduce at least 3 variations of your
BOW features. In order to do so you may glance at the lecture slides or at
the literature for inspiration. Write a short description of your experiments.
Provide examples.

1.4 Hyperparameter tuning

Experiment with the following hyperparameters of your neural network:
1. Activation functions (non-linearities);
2. losses;
3. regularization terms;

4. optimizers.

You should try at least 2 different values for each of these items and evaluate
the resulting models on the development dataset. Report the results in your
PDF report.

Mhttps://github.uio.no/inf5820/course2018/tree/master/neural_bow


https://github.uio.no/inf5820/course2018/tree/master/neural_bow

1.5 Time efficiency

For one hyperparameter, you should try at least 5 different values. This is the
number of hidden layers in your neural network (starting from 1). For each
number of layers, calculate the performance of the resulting model and the
time it took to train this model. Draw a plot showing how performance and
training time depend on the number of layers. This plot should be included in
the PDF report, and the code you used to produce it must be committed to
your repository.

1.6 Evaluation

It goes without saying that all tuning of model hyperparameters must be done on
the development set, and the performance evaluations mentioned above should
also use the same dev data. Note that you should report the following perfor-
mance metrics for each model:

1. accuracy;
2. precision, recall and macro F1 score.

You can calculate these score using either Keras, scikit-learn, or any other
mainstream machine learning library.

Describe the differences in your systems’ performance in the PDF report.
Give your opinion on the influence of different hyper-parameter values. Finally,
choose one best-performing model and evaluate it on the test dataset.

Recall that non-linear models sometimes can produce different results with
the same hyperparameters because of different random initializations. Thus,
train your best model 3 times and evaluate it 3 times, providing the average
and the standard deviation.

What are the results? Are they worse or better than on the dev data? Why?
Report the results both in the PDF report and in a machine-readable format in
your repository.

Good luck and happy coding!



