
INF5820, Fall 2018
Assignment 2: Distributional Word Embeddings

UiO Language Technology Group

Deadline 8 October, at 23:59, to be delivered in Devilry

Goals
1. Learn how to use Gensim library to deal with word embeddings in Python.

2. Learn how to evaluate pre-trained word-embedding models.

3. Get experience in training a neural document classifier using word embed-
dings as building bricks for feature sets.

Introduction
This obligatory assignment aims at using dense word embeddings in typical
natural language processing tasks. In it, you will implement a document classi-
fier based on a feed-forward neural network, using continuous bags-of-words
(combination of dense vectors for words) as features. Primary and recommended
machine learning framework in this course is Keras with TensorFlow as a back-
end. These are provided out-of-the-box in the LTG environment on the Abel
cluster1, and we strongly encourage you to train your models using Abel. If
you would like to use any other deep learning software library, it is absolutely
allowed, provided that your code is available.

Please make sure you read through the entire assignment before you start.
Solutions must be submitted through Devilry2 by 23:59 on October 8. Please
upload a single 4-8 pages PDF file with details on your experiments and your
answers to the questions posed in the assignment.

Your (heavily commented) code and data files should be available in a sep-
arate private repository in the UiO in-house Git platform3 (we remind that the
official programming language of the INF5820 course is Python 3 ). The code
must be self-sufficient, meaning that it should be possible to run it directly on
the data. If you use some additional data sources, these datasets should be put
in the repository as well. If you use some non-standard Python modules, this
should be documented in your PDF report. Make the repository private, but
allow full access to INF5820 teaching staff4. The PDF in Devilry should contain
a link to your repository.

1https://www.uio.no/studier/emner/matnat/ifi/INF5820/h18/setup.html
2https://devilry.ifi.uio.no/
3https://github.uio.no/
4https://github.uio.no/orgs/inf5820/people

1

https://www.uio.no/studier/emner/matnat/ifi/INF5820/h18/setup.html
https://devilry.ifi.uio.no/
https://github.uio.no/
https://github.uio.no/orgs/inf5820/people


If you have any questions, please raise an issue in the INF5820 Git repos-
itory5 or email inf5820-help@ifi.uio.no. Make sure to take advantage of the
group sessions on September 27 and October 4.

Recommended reading
1. Neural network methods for natural language processing. Gold-

berg, Y., 2017.6

2. Speech and Language Processing. Daniel Jurafsky and James Martin.
3rd edition, 2018. Chapter 6, ‘Vector Semantics’ 7 (sections 6.2-6.4, 6.8-
6.12)

3. Word2vec parameter learning explained. Xin Rong, 2014.8

4. SimLex-999: Evaluating Semantic Models with (Genuine) Simi-
larity Estimation. Felix Hill et al, 2015.9

5. Linear Algebra cheat sheet by the LTG10

6. https://radimrehurek.com/gensim/models/word2vec.html

7. https://keras.io/

8. https://www.tensorflow.org/

9. http://research.signalmedia.co/newsir16/signal-dataset.html

The assignment is divided into 4 parts:

1. Basic operations with word embeddings;

2. Intrinsic evaluation of pre-trained word embeddings;

3. Training a word embedding model on in-domain data;

4. Document classification with word embeddings;

1 Basic operations with word embeddings
Prediction-based distributional semantic algorithms (also known as word em-
bedding algorithms) work under the hood of the majority of intelligent sys-
tems dealing with natural language. They became especially popular after the
introduction of Continuous Bag-of-Words and Continuous Skip-gram al-
gorithms, first implemented in the famous word2vec tool. Their ultimate aim
is to learn meaningful vectors (embeddings) for words, such that semantically
similar words have similar vectors. It can be profitable to try to implement a

5https://github.uio.no/inf5820/course2018/issues
6https://www.morganclaypool.com/doi/10.2200/S00762ED1V01Y201703HLT037
7https://web.stanford.edu/~jurafsky/slp3/6.pdf
8https://arxiv.org/pdf/1411.2738.pdf
9http://www.aclweb.org/anthology/J15-4004

10https://www.uio.no/studier/emner/matnat/ifi/INF5820/h18/timeplan/la.pdf

2

https://radimrehurek.com/gensim/models/word2vec.html
https://keras.io/
https://www.tensorflow.org/
http://research.signalmedia.co/newsir16/signal-dataset.html
https://github.uio.no/inf5820/course2018/issues
https://www.morganclaypool.com/doi/10.2200/S00762ED1V01Y201703HLT037
https://web.stanford.edu/~jurafsky/slp3/6.pdf
https://arxiv.org/pdf/1411.2738.pdf
http://www.aclweb.org/anthology/J15-4004
https://www.uio.no/studier/emner/matnat/ifi/INF5820/h18/timeplan/la.pdf


neural embedding algorithm from scratch (we encourage you to do this); how-
ever, in real life one usually employs existing implementations and trains own
models with them, or even re-uses some of the available pre-trained models. In
this part of the obligatory assignment 2 you will get familiar with some of this
software. We suggest Gensim library, but you are free to use other existing
tools. We provide some starter code to work with Gensim11.

1.1 WebVectors: word embeddings online
Make yourself familiar with the WebVectors web service maintained by the LTG
Oslo group12. You don’t need to install or download anything. WebVectors fea-
tures pre-trained word embedding models for English and Norwegian (and some
other languages, if you follow the links to the NLPL word embeddings repos-
itory). You can produce nearest semantic associates for any given word (with
filtering by parts of speech), solve word analogies, calculate cosine similarity
between pairs of words, plot words in the reduced 2-dimensional space, etc.

1.2 Working with pre-trained models locally
Web services are good for quickly demonstrating a technology, but for the ma-
jority of real-world tasks you would like to have models at your hands, espe-
cially if you have lots of data to process. We will now work locally with the
models under the hood of WebVectors. Download the pre-trained English mod-
els for Wikipedia and Gigaword, listed at http://vectors.nlpl.eu/explore/
embeddings/models/ (model identifiers 3 and 29, correspondingly). They are
published in the standard NLPL repository format: as a zip archive containing
README file, meta.json file with the model metadata, and the word embedding
model itself as model.txt.

These models can be easily loaded into any software able to work with word
embeddings. Try the example Gensim code13. You can run the script with the
model filename as an argument:

python play_with_model.py 3.zip
It will load the chosen model (without decompressing the archive contents

to disk) and invite you to enter a query word. If the word is present in the
loaded model, its 10 nearest associates together with their cosine similarity to
the query word will be printed. If you enter several words separated by spaces,
the model will try to find out which of them is the most semantically distant from
the others (‘doesn’t belong here’): for example, ‘fire’ doesn’t belong to the list
‘orange, apple, pineapple’. Note that these models contain lemmatized words
augmented with their part of speech tags in the Universal Dependencies
tagset14 (‘parliament_NOUN ’, etc). Find out which Gensim methods the code
uses (you can consult the manual from the Recommended reading section).
You should be most interested in the most_similar() method.

Your task in this part of the assignment is to analyze the content words from
the first sentence of the abstract to the Chen and Manning ‘A Fast and Accurate

11https://github.uio.no/inf5820/course2018/tree/master/lab_27_09
12http://vectors.nlpl.eu/explore/embeddings/
13https://github.uio.no/inf5820/course2018/blob/master/lab_27_09/play_with_

model.py
14http://universaldependencies.org/u/pos/

3

http://vectors.nlpl.eu/explore/embeddings/models/
http://vectors.nlpl.eu/explore/embeddings/models/
https://github.uio.no/inf5820/course2018/tree/master/lab_27_09
http://vectors.nlpl.eu/explore/embeddings/
https://github.uio.no/inf5820/course2018/blob/master/lab_27_09/play_with_model.py
https://github.uio.no/inf5820/course2018/blob/master/lab_27_09/play_with_model.py
http://universaldependencies.org/u/pos/


Dependency Parser using Neural Networks’ paper15. Particularly, you are to use
the English Wikipedia and Gigaword models to find the not-so-nearest semantic
associates for these words: not the first 10 associates (those can be easily found
using the WebVectors), but the next 5.

1. Modify the provided script (or write your own) so that it is able to take a
text file with query words (one word per line) as an input;

2. create such an input file with all the (lemmatized and PoS-tagged) content
words from the first sentence of the abstract;

• you are free to either use any of the available taggers or simply lem-
matize and tag the words manually (the sentence is not that long).

3. modify the script so that for each input word it outputs its 11th, 12th,
13th, 14th and 15th nearest semantic associates (with the corre-
sponding cosine similarities to the query word);

4. save the produced associates and similarities into a file.

5. Are there any notable differences in the results from the Wikipedia and
Gigaword models?

2 Intrinsic evaluation of pre-trained word embed-
dings

As a rule, you are interested in discovering how good is the word embedding
model you are using. If for some reason you can’t evaluate it on the down-
stream task, you can still use the so called intrinsic evaluation methods, which
hopefully correlate with the prospective practical performance of your system.

One of the established methods to intrinsically evaluate distributional models
is to measure how good they are in reproducing human experts’ judgments
about semantic similarity between pairs of words. The idea is that we
ask a significant amount of human annotators to rank word pairs according
to their similarity and calculate cosine similarities for these pairs in the model
under evaluation. Then we simply measure the Spearman rank-order correlation
coefficient16 between the two lists of similarities. Correlation close to 1 means
that the model is extremely good in mimicking human judgments, and thus
is supposedly superior in most downstream tasks. There are many published
semantic similarity datasets, and lots of academic discussion goes on around
them.

Another popular intrinsic evaluation method is to use the so called anal-
ogy datasets: manually created quadruplets or proportions of semantically
related words, in which a model has to guess the last element. For exam-
ple, for the sequence ‘Paris, France, Oslo, ???’ the model should output
‘Norway’, thus making an analogical inference related to the notion of be-
ing a capital of a country. The performance is measured as simple accuracy
(ratio of correct answers). Analogy datasets evaluate the embeddings’ ability

15http://www.aclweb.org/anthology/D14-1082
16https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

4

http://www.aclweb.org/anthology/D14-1082
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient


to capture complex semantic relations between ‘constellations’ of words. Gen-
sim offers methods for evaluating word embedding models both using seman-
tic similarity datasets (evaluate_word_pairs()) and using analogy datasets
(evaluate_word_analogies()).

Your task is to evaluate several word embedding models and find out the
correlation between their performance in semantic similarities and in analogical
inference.

1. Download the evaluation datasets:

• https://github.uio.no/inf5820/course2018/blob/master/obligatories/
2/simlex.tsv. This is the popular SimLex999 semantic similari-
ties dataset (see [Hill et al, 2015] from theRecommended Reading
section);

• https://github.uio.no/inf5820/course2018/blob/master/obligatories/
2/analogies_semantic.txt. This the so called Google Analogies
dataset first proposed in [Mikolov et al, 2013]. We removed all the
‘syntactic’ sections from it, leaving only the ‘semantic’ ones.

2. Visually inspect the files, make sure you understand their format.

3. Visit the NLPL word embedding repository17 and download the models
with the following identifiers:

• 40. It was trained on the English CoNLL17 corpus, using Continuous
Skipgram algorithm with the vector size 100, and the window size 10.

• 75. It was trained on the English Oil and Gas corpus, using Con-
tinuous Bag-of-Words algorithm with the vector size 400, and the
window size 5.

• 82. It was trained on the English Common Crawl Corpus, using
GloVe algorithm with the vector size 300, and the window size 10.

4. Evaluate these models, using the datasets mentioned above as the gold
standard.

5. Evaluate the models separately on each section of the Google Analogies
dataset (‘capital-common-countries’, ‘gram1-adjective-to-adverb’, etc), and
on each PoS section of the SimLex999 dataset (noun, adjectives, verbs).

6. Save the produced evaluation scores into a file, describe them in your
report.

7. Is there any correlation between the models’ scores on semantic similarity
and analogy evaluations? Are there any sections of the datasets, where
this correlation is stronger or weaker?

8. Provide possible explanations for the observed phenomena.
17http://vectors.nlpl.eu/repository/

5

https://github.uio.no/inf5820/course2018/blob/master/obligatories/2/simlex.tsv
https://github.uio.no/inf5820/course2018/blob/master/obligatories/2/simlex.tsv
https://github.uio.no/inf5820/course2018/blob/master/obligatories/2/analogies_semantic.txt
https://github.uio.no/inf5820/course2018/blob/master/obligatories/2/analogies_semantic.txt
http://vectors.nlpl.eu/repository/


3 Training a word embedding model on in-domain
data

NLP practitioners often use pre-trained word embedding models created by
someone else, in the hope that these models will be good enough for their task
at hand. However, in some cases (particularly if your data is highly specific),
it might make sense to train your own word embedding model on your
in-domain data. Since in the next section of this assignment you are going
to build a document classifier for the SignalMedia texts, it is worth trying a
word embedding model trained on all of these documents (along with other
pre-trained word embeddings).

The Signal Media One-Million News Articles is the same dataset you al-
ready saw in the obligatory assignment 1. It contains texts from news sites
and blogs published in September 2015. Recall that the texts are already lem-
matized and PoS-tagged. Thus, a sentence ‘Satellite will play an important
role in the fight against illegal fishing ’ is converted to ‘Satellite_NNP play_VB
important_JJ role_NN fight_NN illegal_JJ fishing_NN ’. Note that the Penn
Treebank (PTB) tag set was used for part of speech tagging18 and that unlike
in the previous task, the word case is now preserved.

In the obligatory assignment 1, you worked with a part of SignalMedia: texts
published on 10 particular web sites. Of course, the whole corpus is much larger.
In the file /projects/nlpl/teaching/uio/inf5820/2018/signal_texts.txt.gz
(accessible from Abel nodes), you will find all texts from the the news part of
the SignalMedia (excluding blog posts). It contains about 163 million word to-
kens after stop words removal. This is not much compared to gigantic corpora
like Google News, CommonCrawl or Gigaword, but still enough to train a good
word embedding model. What is important is that this model will (hopefully)
capture important semantic properties of words in this particular type of texts.

The corpus is provided as a gzipped plain text file with one document per
line, words separated with spaces. Note that there are no source labels in it, so
it can’t be used to train classifiers: it is only a source of co-occurrence data to
train word embedding models. Your task is to train such a model.

1. Train a word embedding model on the provided SignalMedia texts.

• You can use the provided starter code19.

• Choose any hyperparameters you like, but the resulting model should
have at least 100 000 words in its vocabulary.

2. Train another model on the same data, but with one hyperparameter
different (for example, window size or vector size).

3. The trained models are saved in the native Gensim format, but can be
converted to the standard word2vec formats (see the example conversion
script20).

18https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
19https://github.uio.no/inf5820/course2018/blob/master/lab_27_09/train_

word2vec.py
20https://github.uio.no/inf5820/course2018/blob/master/lab_27_09/convert.py

6

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://github.uio.no/inf5820/course2018/blob/master/lab_27_09/train_word2vec.py
https://github.uio.no/inf5820/course2018/blob/master/lab_27_09/train_word2vec.py
https://github.uio.no/inf5820/course2018/blob/master/lab_27_09/convert.py


4. Together with the 3 WebVectors models you downloaded in the previous
section, you now have 5 word embedding models.

5. Use them to compare the lists of top 20 most frequent words in Sig-
nalMedia, CoNLL17, Oil and Gas, and Common Crawl corpora.

• In Gensim, one can access the model vocabulary sorted by frequency
as MODEL.index2word list.

• If a model is saved in the native Gensim format, one can also access
the words frequencies in the training corpus (as integers) with the
MODEL.wv.vocab[’YOUR_WORD’].count method.

• Note also that if a model is saved as a text file in the word2vec format,
its lines are as a rule sorted by frequency as well. Thus, top 20 lines of
the file correspond to 20 most frequent words in the training corpus.

6. Are the lists different? What does it tell you about the nature of these
corpora?

7. Intrinsically evaluate both SignalMedia models on the test sets you
worked with in the previous section (SimLex999 and Google Analogies).

• Note that the test sets are not PoS tagged, while your training corpus
is. Since you probably don’t want to lose the information contained in
PoS tags, you’ll have to modify the test sets. Analyze them and find
a way to automatically add proper PoS tags so that they correspond
to the tags in the SignalMedia corpus. Save the modified test sets in
your repository.

8. Do you see any difference in the performance of 2 models? How in your
opinion it is related to the changes you’ve made to hyperparameters?

9. How the intrinsic performance of the models you trained compares to the
performance of the pre-trained embeddings downloaded fromWebVectors?
Give possible reasons for your findings.

4 Document classification with word embeddings
Distributional semantic models can represent entities larger than words: phrases,
sentences and whole documents. This makes it possible to train semantically-
aware document classifiers. In this task, you will have to train such a classifier
using deep neural networks and the same English word embedding models that
you got familiar with before.

The classification task itself is very similar to the one in the obligatory assign-
ment 1. The training data is in the same format and can be found at https://
github.uio.no/inf5820/course2018/blob/master/obligatories/2/train_
signal_10_oblig2.tsv.gz. For the sake of the task being a little more inter-
esting, we replaced two of the news sources with other ones, so now the list of
classes looks like this:

1. MyInforms

2. Individual.com

7

https://github.uio.no/inf5820/course2018/blob/master/obligatories/2/train_signal_10_oblig2.tsv.gz
https://github.uio.no/inf5820/course2018/blob/master/obligatories/2/train_signal_10_oblig2.tsv.gz
https://github.uio.no/inf5820/course2018/blob/master/obligatories/2/train_signal_10_oblig2.tsv.gz


3. 4 Traders

4. NewsR.in

5. Reuters

6. Mail Online UK

7. App.ViralNewsChart.com

8. Latest Nigerian News.com

9. EIN News

10. Yahoo! News Australia

There are 49 090 documents in the training data. This time, we also have
a held-out test set of 5 455 documents, which will not be published until
we receive all the submissions. Then, your solutions will be evaluated on
this test set, so that we can rank the systems by their objective performance.
The task is again to predict the document class (source) based on the words
occurring in this document.

In the assignment 1, you did this by representing all the documents as bags-
of-words: that is, extracting the collection vocabulary (the union of all word
types in the texts) and counting frequencies of each word type in each document.
Documents were then represented as sparse vectors of the size equal to the size
of the vocabulary. But this time, we would like to:

1. leverage semantic information (treat semantically similar words simi-
larly);

2. work with dense low-dimensional document vectors, not with sparse
high-dimensional vectors produced by the bag-of-words approach.

Your task is to come up with semantically-aware representations of the doc-
uments in the training dataset and to create classifiers able to predict the doc-
ument class using these representations. The classifiers (again) are supposed to
be feed-forward neural networks, but this time they should take as an input not
one-hot word representations, but continuous word embeddings.

You can safely use the code for the classifiers from the assignment 1 (or from
the example solution21). The necessary change will be to somehow produce
meaningful dense representations of the documents, instead of BoW. You can
implement any approach to that that comes to your mind. The most straightfor-
ward way is to use the so-called semantic fingerprints algorithm (averaging
or summing up the embeddings of words in the document). You can either:

1. Transform word sequences into ‘semantic fingerprints’ beforehand, and
then feed the resulting averaged vectors as features into your neural model.

• For that, implement the fingerprint() function in https://github.
uio.no/inf5820/course2018/blob/master/obligatories/2/helpers.
py. It should lookup vectors for document words in the given word
embedding model, and then return the sum or the average of these

21https://github.uio.no/inf5820/course2018/tree/master/obligatories/1/solution

8

https://github.uio.no/inf5820/course2018/blob/master/obligatories/2/helpers.py
https://github.uio.no/inf5820/course2018/blob/master/obligatories/2/helpers.py
https://github.uio.no/inf5820/course2018/blob/master/obligatories/2/helpers.py
https://github.uio.no/inf5820/course2018/tree/master/obligatories/1/solution


vectors, skipping the words which are not present in the model. It
should support both ‘binary’ and ‘count’ modes (using either sets or
lists of document words).

2. Use the pre-trained word embedding model as an Embedding() layer in
Keras, and then perform the summation or averaging of the result-
ing vector arrays for each document in the computation graph
itself, using the Keras bult-in functions (Add(), Average(), etc). Note
that Gensim supports direct conversion of loaded word embedding models
into Keras layers via the get_keras_embedding() method.

Since this time there is a separate test set (not yet published), you don’t have
to separate the data into the training and test parts. You still have to extract
some part of the data as a development/validation set, either beforehand in a
separate file, or using the validation_split parameter in Keras.

4.1 Training a classifier
Train a fully-connected feed-forward neural network classifier on the seman-
tic fingerprints produced from the documents in the training dataset, evaluating
it on the development corpus. Experiment with different activation functions,
layer dimensionalities and regularization terms. Because you use pre-trained
word embedding models with the fixed vocabularies, you don’t need to extract
vocabulary from the text yourselves (no need for the Tokenizer() and the like).

Since your document representations now depend on what word embedding
model you are using, it is of utmost importance to find out which of them is bet-
ter for this task. Try all the WebVectors models you played with in the previous
sections of this assignment (identifiers 3, 29, 40, 75, 82), and the models you
trained on the whole SignalMedia corpus. Note that in different models, differ-
ent PoS tagging schemas are used. In the models 3 and 29, words are augmented
with the Universal Dependencies (UD) PoS tags. Thus, to use them, you’ll
have to implement the tag_convert() function in https://github.uio.no/
inf5820/course2018/blob/master/obligatories/2/helpers.py, which should
take as an input a word with the PTB PoS tag and return the same word with
the corresponding UD PoS tag. The models 40, 75 and 82 do not contain PoS
tags at all, so you’ll have to simply strip them from the texts, if you use these
models. The models trained on SignalMedia are of course fully consistent with
the training corpus format, so you don’t have to do anything in this case.

Describe the parameters of your network and the evaluation results in the
PDF report. List the performance of the classifiers using different word embed-
ding models. Why some of them are better and some of them are worse (with
the same neural architectures)? Can you think of some set of hyperparame-
ters to train word vectors on the SignalMedia corpus, which can be particularly
useful for this classification task? Train a word embedding model using these
hyperparameters and test your hypothesis.

As an additional experiment, implement a version of the classifier which does
not rely on any pre-trained word embedding. It should extract the vocabulary
of the desired size from the training set (as in the obligatory assignment 1), and
initialize an Embedding() layer with random vectors for the extracted words.
These vectors are then considered to be the parameters of the neural network
and are trained along with other weight matrices, thus optimizing word

9

https://github.uio.no/inf5820/course2018/blob/master/obligatories/2/helpers.py
https://github.uio.no/inf5820/course2018/blob/master/obligatories/2/helpers.py


embeddings for this particular classification task. Report on the changes in
classification performance and in the training time with this approach.

We remind that you should report the macro F1 score. Find your best-
performing classifier and save it as a Keras model. If you use a custom word
embedding model (not a model from WebVectors), save it as well. Recall that
probabilistic classifiers sometimes can produce different results with the same
hyperparameters because of different random initializations. Thus, train your
best classification architecture 3 times and evaluate it 3 times, reporting the
average and the standard deviation.

4.2 Comparing against BoW classifier
Once you have chosen your best-performing classifier, compare it with the bag-
of-words approach you used in the previous obligatory assignment (set the
vocabulary size to 3 000). Use the same neural architecture, change only the
input features. Vary the number of hidden layers and analyze how the F1
performance of the classifier changes when using BoW and when using word
embeddings. What approach is better with regards to the classification perfor-
mance and with regards to the training time? What are theoretical memory
requirements for BoW and for dense representations of documents?

Give your opinion on whether it is worth using word embeddings in this
particular document classification task.

5 Conclusion
Your best classifier should be published in your UiO Github repository as a
saved Keras model. If this best classifier used a word embedding model you
trained on the SignalMedia texts, this model must be published as well.

Also, you have to provide an eval_on_test.py22 script. It should take as
an input a saved model, word embedding file and a test dataset, and return
accuracy, precision, recall, and F1 scores for each class in the test set, as well
as their macro average values. We will use it to evaluate your classifier on the
held-out test set. Hope your system will be the best!

Good luck and happy coding!

22Similar to the one at https://github.uio.no/inf5820/course2018/blob/master/
obligatories/1/solution/eval_on_test.py

10

https://github.uio.no/inf5820/course2018/blob/master/obligatories/1/solution/eval_on_test.py
https://github.uio.no/inf5820/course2018/blob/master/obligatories/1/solution/eval_on_test.py

	Basic operations with word embeddings
	WebVectors: word embeddings online
	Working with pre-trained models locally

	Intrinsic evaluation of pre-trained word embeddings
	Training a word embedding model on in-domain data
	Document classification with word embeddings
	Training a classifier
	Comparing against BoW classifier

	Conclusion

