
INF5820, Fall 2018
Assignment 1: Neural Classification with Bags

of Words

UiO Language Technology Group

August 29, 2018

Deadline 14 Sep., at 23:59, to be delivered in Devilry

Goals
1. Learn how to use the Abel HPC cluster to train deep learning models.

2. Get familiar with the Keras library

3. Learn how to use Keras to train and evaluate neural classifiers in NLP
tasks.

Introduction
This is the first obligatory assignment in the INF5820 course, Fall 2018. It is
comparatively small and aims at introducing you to the basics of neural network
approaches to classification tasks in natural language processing. In it, you will
implement a document classifier based on a simple feed-forward neural network,
using bags-of-words as features. Primary and recommended machine learning
framework in this course is Keras with TensorFlow as a backend. These are
provided out-of-the-box in the LTG environment on the Abel cluster1, and we
strongly encourage you to train your models using Abel. If you would like to
use any other deep learning software library, it is absolutely allowed, provided
that you implement your own classifier, not simply take an off-the-shelf tool,
and that your code is available.

Please make sure you read through the entire assignment before you start.
Solutions must be submitted through Devilry2 by 23:59 on September 14. Please
upload a single PDF file with your answers. Your (heavily commented) code
and data files should be available in a separate private repository in the UiO
in-house Git platform3. Make the repository private, but allow full access to
INF5820 teaching staff4. The PDF in Devilry should contain a link to your
repository. If you have any questions, please raise an issue in the INF5820 Git

1https://www.uio.no/studier/emner/matnat/ifi/INF5820/h18/setup.html
2https://devilry.ifi.uio.no/
3https://github.uio.no/
4https://github.uio.no/orgs/inf5820/people

1

https://www.uio.no/studier/emner/matnat/ifi/INF5820/h18/setup.html
https://devilry.ifi.uio.no/
https://github.uio.no/
https://github.uio.no/orgs/inf5820/people


repository5 or email inf5820-help@ifi.uio.no. Make sure to take advantage of
the group sessions on August 30 and September 6.

Recommended reading
1. Neural network methods for natural language processing. Gold-

berg, Y., 2017.6

2. Speech and Language Processing. Daniel Jurafsky and James Martin.
3rd edition draft of August 12, 2018. Chapter 7, ‘Neural Networks and
Neural Language Models’ 7 (sections 7.1, 7.2, 7.3 and 7.4)

3. Linear Algebra cheat sheet by the LTG8

4. https://keras.io/

5. https://www.tensorflow.org/

6. http://research.signalmedia.co/newsir16/signal-dataset.html

1 Implementing a neural classifier
We will be working with the original data set from the The Signal Media One-
Million News Articles Dataset, which contains texts from news sites and blogs
from September 2015. The dataset contains several fields of metadata for each
article, but in this assignment we will be interested only in one of them: the
source of an article, i.e., from which news site it comes. This is a supervised clas-
sification task, since we have gold labels for this field. You’ll have to implement
a simple feed-forward neural network which takes bag-of-words text representa-
tions as input and produces source predictions as an output. The task includes
processing the text data to extract BOW features, formatting these appropri-
ately for the deep learning framework you are using (most probably, Keras)
and experimenting with the classifier hyperparameters to come to an optimal
solution.

The assignment is divided into six parts:

1. Data processing;

2. Training a model.

3. Playing with feature representations;

4. Playing with hyperparameters;

5. Measuring time efficiency;

6. Evaluating the models.
5https://github.uio.no/inf5820/course2018/issues
6https://www.morganclaypool.com/doi/10.2200/S00762ED1V01Y201703HLT037
7https://web.stanford.edu/~jurafsky/slp3/7.pdf
8https://www.uio.no/studier/emner/matnat/ifi/INF5820/h18/timeplan/la.pdf

2

https://keras.io/
https://www.tensorflow.org/
http://research.signalmedia.co/newsir16/signal-dataset.html
https://github.uio.no/inf5820/course2018/issues
https://www.morganclaypool.com/doi/10.2200/S00762ED1V01Y201703HLT037
https://web.stanford.edu/~jurafsky/slp3/7.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF5820/h18/timeplan/la.pdf


You have to submit a written report of 2-4 pages to Devilry, which provides
details on your experiments and addresses the questions posed in the assignment.
Your code should be available in your Git repository (we remind that the official
programming language of the INF5820 course is Python 3 ). The code must be
self-sufficient, meaning that it should be possible to run it directly on the data.
If you use some additional data sources, these datasets should be put in the
repository as well. If you use some non-standard Python modules, this should
be documented in your PDF report.

1.1 Data processing
The data set we use is the The Signal Media One-Million News Articles Dataset.
In this assignment, you’ll have to work with a subset of it, containing articles
from 10 news web sites (they are represented best in the main dataset):

1. MyInforms

2. Individual.com

3. 4 Traders

4. NewsR.in

5. Reuters

6. Mail Online UK

7. App.ViralNewsChart.com

8. Latest Nigerian News.com

9. Yahoo! Finance

10. Town Hall

These sites are different in their dominant topics and overall aim, thus we expect
that the words used in their news articles would reflect these differences. Overall,
our dataset contains about 55 thousand articles and about 12 million word
tokens.

The dataset is available on the UiO Github9. It is provided as a gzipped
tab-separated text file, with one line corresponding to one news article. Data
format (tab-separated):

• source (class)

• text

The texts are already lemmatized and POS-tagged, and stop words are removed,
to make NLP tasks easier. Thus, a sentence ‘Satellite will play an important
role in the fight against illegal fishing ’ is converted to ‘satellite_NN play_VB
important_JJ role_NN fight_NN illegal_JJ fishing_NN ’. Note that the Penn

9https://github.uio.no/inf5820/course2018/blob/master/obligatories/1/signal_
10_5820.tsv.gz

3

https://github.uio.no/inf5820/course2018/blob/master/obligatories/1/signal_10_5820.tsv.gz
https://github.uio.no/inf5820/course2018/blob/master/obligatories/1/signal_10_5820.tsv.gz


Treebank tag set was used for part of speech tagging10. The documents are
shuffled, so there is no inherent order in the dataset.

Suppose we want to train a classifier which will be able to predict the source
of a news text based on the words used in it. For this, we need to somehow
jump from documents as character sequences to documents as feature vectors
that can be fed to a machine learning algorithm, such as a feed-forward neural
network. The obvious way to do this is to represent all the documents as bags-
of-words: that is, extract the collection vocabulary (the union of all word types
in the texts) and count frequency of each word type in each document (or mark
the binary value of whether the word type appears in the document or not).
Documents are then represented as sparse vectors of the size equal to the size of
the vocabulary. Machine learning classifiers can be trained on such data, which
is what you are going to do.

We provide the dataset as is, but before training you have to split it into
train, development and test parts, in the proportion of (80/10/10). You can
also use theKeras internal ability to automatically extract development/validation
set. Make sure to keep the distribution of source labels as similar as possible in
all 3 splits. Describe the process of splitting the dataset in details in your PDF
report.

1.2 Training a classifier
We formulate our classification task as follows: given a list of words in a docu-
ment, predict the source of this document.

You must write the code which takes the SignalMedia dataset and:

• infers a common dictionary for all documents in the dataset;

• extracts bags of words for each document;

• extracts gold source labels for each document (for example, sources[i]
contains the source label for the ith document);

• all this serves to prepare the data to be fed into a classifier.

Briefly describe this code in the report.
Implement a fully-connected feed-forward neural network (multi-layer

perceptron) which trains on these bag-of-words features and evaluate it on the
development dataset (see the ‘Evaluation’ subsection below). For a start, you
can look at the classifier code discussed at the group session 11. Describe the
parameters of your network and the evaluation results in the PDF report.

1.3 Feature tuning
Try to experiment with feature tuning. Introduce at least 3 variations of your
BOW features. In order to do so you may glance at the lecture slides or at
the literature for inspiration. Write a short description of your experiments.
Provide examples.

10https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
11https://github.uio.no/inf5820/course2018/tree/master/neural_bow

4

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://github.uio.no/inf5820/course2018/tree/master/neural_bow


1.4 Hyperparameter tuning
Experiment with the following hyperparameters of your neural network:

1. Activation functions (non-linearities);

2. losses;

3. regularization terms;

4. optimizers.

You should try at least 2 different values for each of these items and evaluate
the resulting models on the development dataset. Report the results in your
PDF report.

1.5 Time efficiency
For one hyperparameter, you should try at least 5 different values. This is the
number of hidden layers in your neural network (starting from 1). For each
number of layers, calculate the performance of the resulting model and the
time it took to train this model. Draw a plot showing how performance and
training time depend on the number of layers. This plot should be included in
the PDF report, and the code you used to produce it must be committed to
your repository.

1.6 Evaluation
As already said, all tuning of model hyperparameters must be done on the de-
velopment set, and the performance evaluations mentioned above should also
use the same dev data. Note that you should report the following performance
metrics for each model:

1. accuracy;

2. precision, recall and macro F1 score.

You can calculate these score using either Keras, scikit-learn, or any other
mainstream machine learning library.

Describe the differences in your systems’ performance in the PDF report.
Give your opinion on the influence of different hyper-parameter values. Choose
one best-performing model and evaluate it on the test dataset.

Recall that non-linear models sometimes can produce different results with
the same hyperparameters because of different random initializations. Thus,
train your best model 3 times and evaluate it 3 times, providing the average
and the standard deviation.

What are the results? Are they worse or better than on the dev data? Why?
Report the results both in the PDF report and in a machine-readable format in
your repository.

Good luck and happy coding!

5


	Implementing a neural classifier
	Data processing
	Training a classifier
	Feature tuning
	Hyperparameter tuning
	Time efficiency
	Evaluation


