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Welcome, test pilots!

I INF5820 – Language Technological Applications
I IN5550 – Advanced Topics in Natural Language Processing
I Main focus: practical application of artificial neural networks (NNs) for
various NLP tasks.

I Team effort:
I Andrey Kutuzov
I Lilja Øvrelid
I Stephan Oepen
I Erik Velldal
I You
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What is a neural model?

I NNs are a family of powerful
machine learning models.

I Weakly based on the
metaphor of a neuron.

I Learns not only to make
predictions, but how to
represent the data:

I non-linear transformations of
the input in the ‘hidden layers’.

I ‘Deep Learning’: NNs with
several hidden layers.
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Textbook

I Neural Network Methods for
Natural Language Processing
by Yoav Goldberg (Morgan &
Claypool Publishers, 2017).

I Free e-version available when
at UiO; http://oria.no/

I Supplementary research
papers may be added.
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Today

I Introduction
I Why a course on neural methods?

I Motivation
I Historical trends
I Success stories
I Some contrasts between NNs and traditional ML

I Course overview
I Lab sessions and obligatory assignments
I Programming environment
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Paradigm shifts in NLP (and AI at large)
I 50s–80s: mostly rule-based (symbolic / rationalist) approaches.
I Hand-crafted formal rules and manually encoded knowledge.
I (Though some AI research on neural networks in the 40s and 50s).
I Late 80s: success with statistical (‘empirical’) methods in the fields of
speech recognition and machine translation.

I Late 90s: NLP (and AI at large) sees a massive shift towards statistical
methods and machine-learning.

I Based on automatically inferring statistical patterns from data.
I 00s: Machine-learning methods dominant.
I 2010–: neural methods increasingly replacing traditional ML.
I A revival of techniques first considered in the 40s and 50s.
I But recent developments in computational power and availability of
data have given great breakthroughs in scalability and accuracy.
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Success stories

(Young et al. (2018): Recent Trends in Deep Learning Based Natural
Language Processing)
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Success stories

I Natural Language Processing (almost) from Scratch by Ronan
Collobert et al., 2011.

I Pioneered much of the work on NNs for NLP.
I Cited 3312 times, as of today (10 Aug. 2018).
I Close to or better than SOTA for several core NLP tasks (PoS tagging,
chunking, NER, and SRL).

I NNs have since been successfully applied to most NLP tasks.
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Success stories

Machine translation (Google Translate)

I No 1:
Kilimanjaro is a snow-covered mountain 19,710 feet high, and is said to
be the highest mountain in Africa. Its western summit is called the
Masai “Ngaje Ngai,” the House of God. Close to the western summit
there is the dried and frozen carcass of a leopard. No one has explained
what the leopard was seeking at that altitude.

I No 2:
Kilimanjaro is a mountain of 19,710 feet covered with snow and is said
to be the highest mountain in Africa. The summit of the west is called
“Ngaje Ngai” in Masai, the house of God. Near the top of the west
there is a dry and frozen dead body of leopard. No one has ever
explained what leopard wanted at that altitude.
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Success stories

Machine translation (Google Translate)
I No 3:
Kilimanjaro is 19,710 feet of the mountain covered with snow, and it is
said that the highest mountain in Africa. Top of the west, “Ngaje
Ngai” in the Maasai language, has been referred to as the house of
God. The top close to the west, there is a dry, frozen carcass of a
leopard. Whether the leopard had what the demand at that altitude,
there is no that nobody explained.
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Success stories

Text-to-Speech (van den Oord et al., 2016):

(https:
//deepmind.com/blog/wavenet-generative-model-raw-audio/)
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Success stories
I Neural models have caused great advances in the field of image
processing

I New tasks combining image and language are emerging
I Visual Question Answering:

(http://visualqa.org/)
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Contrasting NN and non-NN ML

I We will briefly review:
I Issues when working with language data and
I issues with non-neural ML,
I and how NNs can help.
I Feature engineering and model design
I The role of the designer (you).
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What are some example NLP tasks?
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What is a classifier?

I Very high-level:

I A learned mapping from inputs to
outputs.

I Learn from labeled examples; a set of
objects with correct class labels.

I 1st step in creating a classifier;
defining a representation of the input!

I Typically given as a feature vector.

15



Feature engineering

I The art of designing features for representing objects to a classifier.
I Manually defining feature templates (for automatic feature extraction).
I Typically also involves large-scale empirical tuning to identify the
best-performing configuration.

I Although there is much overlap in the types of features used across
tasks, performance is highly dependent on the specific task and dataset.

I We will review some of the most standard feature types. . .
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‘Atomic’ features
I The word forms occurring in the target context.
I E.g., Bag-of-words (BoW): All words within the context, unordered.
I The context could be a

I document,
I sentence,
I window of a given span centered on a target word

‘The sandwiches were hardly fresh and the service not impressive.’

⇒
{service, fresh, sandwiches, impressive, not, hardly, . . . }

I Can also be ordered, or defined over characters / substrings.
I Feature vectors typically record frequency counts or some weighted
function of this.

I Each dimension encodes one feature (e.g., co-occurrence with ‘fresh’).
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A bit more linguistically informed

I Various levels of pre-processing often performed to infer more
linguistically informed features, e.g.:

I Lemmatization
I Part-of-speech (PoS) tagging
I ‘Chunking’ (phrase-level / shallow parsing)

I Often need to define combined features to capture relevant information.
I E.g: BoW of lemmas + PoS (sandwich_NOUN)
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Dealing with compositionality

man bites dog , dog bites man

I Some complex feature combinations attempt to take account of the
fact that language is compositional.

I E.g. by applying parsing to infer information about syntactic and
semantic relations between the words.

I A more simplistic approximation that is often used in practice:
I n-grams (typically bigrams and trigrams).

{service, fresh, sandwiches, impressive, not, hardly, . . . }

vs.

{‘hardly fresh’, ‘not impressive’, ‘service not’, . . . }

I The need for combined features is also related to the linearity of a
model! (We return to this next week.)
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Discreteness and data sparseness

I The resulting feature vectors are very high-dimensional; typically in the
order of thousands or even millions (!) of dimensions.

I Very sparse; only a very small ratio of non-zero features.

I The features we have considered are discrete and categorical.
I Categorical features that are all equally distinct.
I No sharing of information;
I In our representation, a feature recording the presence of ‘impressive’ is
completely unrelated to ‘awesome’, ‘admirable’, etc.

I Made worse by the ubiquitous problem of data sparseness.
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Data sparseness

I Language is creative and productive:

I No corpus can be large enough to provide full coverage.

I Zipf’s law and the long tail.

I Word types in Moby Dick

I 44% occur only once (red)

I 17% occur twice (blue)

I the = 7% of the tokens
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Alleviating the problems of discreteness and sparseness

I Linguistic pre-processing can alleviate the problems to some degree.
I E.g. fewer unique lemmas than full-forms; PoS provides some
generalization; etc.

I Other class-based features sometimes available:
I E.g. dictionary resources like Gazetteers (for NER) or WordNet.
I Add features corresponding to the ID of WordNet synsets or hypernyms.
I Provides some degree of generalization.

Another angle
I We have lots of text but typically very little labeled data. . .
I How can be make better use of unlabeled data.
I Include distributional information.
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Distributional information

I We can incorporate information about the similarities between our
discrete features by considering distributional information.

I The distributional hypothesis: words that occur in similar contexts are
similar (syntactically or semantically).

I How can we record and represent the contextual distribution of words?

I Summing feature vectors (like the ones we’ve discussed today) for all
occurrences of a given word gives us a distributional word vector!

I Vector distance indicate word similarity.
I Completely unsupervised; can be generated from unlabeled data.
I Great, but how can we incorporate this into our model?
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Distributional word vectors

I Can be incorporated in a model either by clustering the vectors (also
unsupervised) and using cluster ids as class-based features,

I or by using the distributional vectors to replace the original discrete
features (e.g. by concatenation or summing).

I In both cases it means that even for words not seen during training the
model can have learned useful information about it!
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Word embeddings

I A particular type of distributional word vector:

I Mapped onto a dense and low-dimensional space (typically 50–300 d.)

I Makes them well-suited for replacing discrete features.

I Not just distributional, but distributed.

I Popular toolkits: word2vec, fastText, GloVe, . . .

I Andrey will be covering word embeddings in lectures 4–6.

I The most common input representation to NNs for NLP tasks.

I Can also be learned from scratch by the NN itself.

I More abstract feature representations are then learned automatically by
the network (in the form of hidden layers).

I Representation learning
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Some pros and cons of NNS

NNs hold promise to. . .
I reduce manual feature engineering,

I make better use of unlabeled data,

I through the use of distributional
continuous input representations,

I and further learn more task-adapted
internal representations of the data,

I giving less language-specific models.

I Tends to scale better with more data.

I Though at the cost of being less
interpretable and more complex with
more parameters.
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Focus of manual engineering

Traditional ML
I The model architecture is given.
I Focus on designing and tuning
the features.

I Input: high-dimensional and
sparse; manually defined
features.

Neural methods
I Uniform input representation:
word embeddings.

I Focus on designing and tuning
the model architecture.

I Input: low-dimensional and
dense; learned unsupervised.
The network learns additional
internal representations.

I No free lunch. . .
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Scientific Programming in INF5820

I Strong practical and programming
elements in this course;

I four obligatory assignments; all
predominantly ‘hands-on’;

I representative of sub-problems in
typical MSc theses at LTG;

I fairly data- and compute-intensive
throughout the semester;

I learn how to use the national Abel
supercluster (10,000+ cpus);

I ranked 96 among the world’s
fastest supercomputers (in 2012).
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Deep Learning through Python

I Python is a Lisp dialect (with an idiosyncratic syntax) with great
popularity for neural network–based machine learning;

I it provides a very convenient, high-level scripting language with a gentle
learning curve; works easily across different platforms;

I comprehensive standard library; ecosystem of community-maintained
add-on modules with specialized (and optimized) functionality;

I pretty much everything open-source; we provide reference environment
on Abel; in principle possible to install ‘at home’ (for development).
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A Menagerie of Interoperable Modules

I Any self-respecting technology giant today
develops their own DL framework;

I plus a few from university environments;

I open source → community involvement;

I TensorFlow (Google) is a mature software
infrastructure (built natively in C++);

I Keras provides additional abstraction layer
(common API) across multiple frameworks;

I Gensim is specialized in large-scale
distributional analysis → (word)
‘embeddings’;

I all integrated in a course-specific Python 3
installation on Abel (see the course page).
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Labs and Obligatory Assignments (grupper & obliger)

I Labs: Thursday, 10:15–12:00;
I four obligatory assignments;
I rigid schedule; all four
assignments must be submitted;

I minimum 60% of points across all
four required to qualify for exam;

I no re-submissions.

Schedule
# Theme Out In
1 Feed-forward networks 28/8 14/9
2 Training and evaluating word embeddings 18/9 5/10
3 CNN classification 9/10 26/10
4 RNN sequence classification 30/10 16/11
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Next week

I Introducing mathematical notation for describing classifiers.
I From linear regression to feed-forward networks and multi-layer
perceptrons.

I Linear vs non-linear decision boundaries
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