Linear Algebra Cheatsheet

UiO Language Technology Group

1 Basics of vectors and matrices

1.1 Matrices

- Matrix is a rectangular 2-dimensional array of numbers (scalars).
- $\boldsymbol{M} \in \mathbb{R}^{m \times n}$ is a matrix \boldsymbol{M} with m rows and n columns.
- For example:

$$
\boldsymbol{M}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 \\
4 & 3 & 2 & 1
\end{array}\right]
$$

- Here, \boldsymbol{M} is a 3×4 matrix: it has 3 rows and 4 columns. 3 and 4 are the dimensions of M.

1.2 Entries

- Matrices consist of entries.
- $\boldsymbol{M}_{i, j}$ or $\boldsymbol{M}_{[i, j]}$ is the entry in the $i^{\text {th }}$ row and $j^{\text {th }}$ column of \boldsymbol{M}.
- For example:

$$
M_{0,0}=1
$$

- NB: we use 0-indexed notation, following Python conventions.

1.3 Vectors

- Vector is a $1 \times n$ matrix (NB: we use row vectors).
- $\boldsymbol{v} \in \mathbb{R}^{n}$ is a vector \boldsymbol{v} with n entries or components (n-dimensional vector).
- For example:

$$
\boldsymbol{v}=[4,3,2,1]
$$

- Here, \boldsymbol{v} is a 4-dimensional vector.
- \boldsymbol{v}_{i} or $\boldsymbol{v}_{[i]}$ is the $i^{t h}$ entry of the vector.
- For example:

$$
\boldsymbol{v}_{1}=3
$$

2 Addition and scalar multiplication

2.1 Matrix addition

- Matrix addition is simply adding the entries of two or more matrices one by one.
- This summation results in another matrix:
- $M_{o}+M_{1}=M_{2}$
- For example:

$$
\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 0 & 0 \\
3 & 2 & 1
\end{array}\right]+\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
3 & 4 & 5 \\
0 & 0 & 0 \\
4 & 3 & 2
\end{array}\right]
$$

- NB: we can add only matrices of the same dimensionality!
- The resulting matrix retains the same dimensions $(3 \times 3$ in the example above).
- One can subtract matrices in the same way.

2.2 Multiplication by scalar

- To multiply a matrix by scalar (a raw number), one also simply multiplies all its entries by this scalar.
- It results in another matrix of the same dimensionality.
- For example:

$$
\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 0 & 0 \\
3 & 2 & 1
\end{array}\right] \times 2=\left[\begin{array}{lll}
4 & 6 & 8 \\
0 & 0 & 0 \\
6 & 4 & 2
\end{array}\right]
$$

- Note that the multiplication of a matrix by a scalar and the multiplication of a scalar by a matrix are equal:

$$
\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 0 & 0 \\
3 & 2 & 1
\end{array}\right] \times 2=2 \times\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 0 & 0 \\
3 & 2 & 1
\end{array}\right]=\left[\begin{array}{lll}
4 & 6 & 8 \\
0 & 0 & 0 \\
6 & 4 & 2
\end{array}\right]
$$

- One can divide a matrix by a scalar in the same way:

$$
\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 0 & 0 \\
3 & 2 & 1
\end{array}\right] / 2=\left[\begin{array}{ccc}
1 & 1.5 & 2 \\
0 & 0 & 0 \\
1.5 & 1 & 0.5
\end{array}\right]
$$

- This essentially amounts to the scalar multiplication by fraction:

$$
\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 0 & 0 \\
3 & 2 & 1
\end{array}\right] / 2=\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 0 & 0 \\
3 & 2 & 1
\end{array}\right] \times \frac{1}{2}=\left[\begin{array}{ccc}
1 & 1.5 & 2 \\
0 & 0 & 0 \\
1.5 & 1 & 0.5
\end{array}\right]
$$

2.3 Miscellaneous

- All these operations can be combined and sequenced together as any other mathematical operations.
- Remember that a vector is simply a special kind of a matrix: thus, vectors can be added and multiplied by scalars in exactly the same way.

3 Vector to vector multiplication

- Vector to vector multiplication $(\boldsymbol{v} \cdot \boldsymbol{x})$ is a special case of matrix-matrix multiplication.
- It is defined only if the dimensionalities of both vectors match:
$\boldsymbol{v}, \boldsymbol{x} \in \mathbb{R}^{n}$
- The result of this multiplication is called the inner product or dot product and is a scalar:
$\boldsymbol{v} \cdot \boldsymbol{x}=z$
- It is calculated as a sum of one-by-one multiplications of the corresponding entries of \boldsymbol{v} and \boldsymbol{x} :

$$
z=\sum_{i=0}^{n} \boldsymbol{v}_{i} \times \boldsymbol{x}_{i}
$$

- For example:
$[2,0,2] \cdot[1,3,1]=2 \times 1+0 \times 3+2 \times 1=2+0+2=4$
- As simple as that!

4 Vector to matrix multiplication

4.1 Requirements

- Vector to matrix multiplication $(\boldsymbol{v} \cdot \boldsymbol{W})$ is also a special case of matrixmatrix multiplication.
- It is defined only if the dimensionality of the vector and the number of rows in the matrix match:
- $\boldsymbol{v} \in \mathbb{R}^{m}, \boldsymbol{W} \in \mathbb{R}^{m \times n}$
- ...more explicitly, the number of columns in the vector and the number of rows in the matrix must be identical:
- $\boldsymbol{v} \in \mathbb{R}^{1 \times m}, \boldsymbol{W} \in \mathbb{R}^{m \times n}$

4.2 Process

- The result of right-multiplying a vector $\boldsymbol{v} \in \mathbb{R}^{m}$ (or, equally, $\boldsymbol{v} \in \mathbb{R}^{1 \times m}$) by a matrix $\boldsymbol{W} \in \mathbb{R}^{m \times n}$ is a vector $\boldsymbol{y} \in \mathbb{R}^{n}$
$-\boldsymbol{v} \cdot \boldsymbol{W}=\boldsymbol{y}$
- note how the matching dimensions m are 'self-destroyed'.
- Each component i of \boldsymbol{y} is a sum of one-by-one multiplying columns of \boldsymbol{v} by the entries of the $i^{t h}$ column of \boldsymbol{W}.
- For example:

$$
\boldsymbol{y}=\boldsymbol{v} \cdot \boldsymbol{W}=[2,3] \cdot\left[\begin{array}{lll}
4 & 2 & 3 \\
3 & 2 & 1
\end{array}\right]=[17,10,9]
$$

1. $\boldsymbol{y}_{0}=\boldsymbol{v}_{0} \times \boldsymbol{W}_{0,0}+\boldsymbol{v}_{1} \times \boldsymbol{W}_{1,0}=2 \times 4+3 \times 3=8+9=17$
2. $\boldsymbol{y}_{1}=\boldsymbol{v}_{0} \times \boldsymbol{W}_{0,1}+\boldsymbol{v}_{1} \times \boldsymbol{W}_{1,1}=2 \times 2+3 \times 2=4+6=10$
3. $\boldsymbol{y}_{2}=\boldsymbol{v}_{0} \times \boldsymbol{W}_{0,2}+\boldsymbol{v}_{1} \times \boldsymbol{W}_{1,2}=2 \times 3+3 \times 1=6+3=9$

- Here, the result is the 3 -dimensional row vector $\boldsymbol{y} \in \mathbb{R}^{3}$.

5 Matrix to matrix multiplication

5.1 Matrix to matrix is another matrix

- Any row vector is in fact a $1 \times n$ matrix.
- Thus, to multiply one matrix by another, is conceptually the same as multiplying a vector by a matrix.
- Again, the number of columns in the left matrix \boldsymbol{W}^{1} must match the number of rows of the right matrix \boldsymbol{W}^{2} :
$\boldsymbol{W}^{1} \in \mathbb{R}^{m \times n}, \boldsymbol{W}^{2} \in \mathbb{R}^{n \times z}$
- But the result of this multiplication is another matrix:
$\boldsymbol{W}^{1} \cdot \boldsymbol{W}^{2}=\boldsymbol{W}^{3} \in \mathbb{R}^{m \times z}$
- Again, the matching dimensions n are 'self-destroyed'.

5.2 Process

- For example, suppose $\boldsymbol{W}^{1} \in \mathbb{R}^{2 \times 3}, \boldsymbol{W}^{2} \in \mathbb{R}^{3 \times 4}$:

$$
\boldsymbol{W}^{3}=\boldsymbol{W}^{1} \cdot \boldsymbol{W}^{2}=\left[\begin{array}{lll}
4 & 2 & 3 \\
3 & 2 & 1
\end{array}\right] \cdot\left[\begin{array}{llll}
2 & 1 & 2 & 2 \\
1 & 2 & 1 & 1 \\
3 & 3 & 3 & 2
\end{array}\right]=\left[\begin{array}{llll}
19 & 17 & 19 & 16 \\
11 & 10 & 11 & 10
\end{array}\right]
$$

- Here, $\boldsymbol{W}^{3} \in \mathbb{R}^{2 \times 4}$
- It is produced like this:
- Each row i of $\boldsymbol{W}^{\mathbf{3}}$ is a product of multiplying the $i^{\text {th }}$ row of $\boldsymbol{W}^{\mathbf{1}}$ (a vector) by $\boldsymbol{W}^{\mathbf{2}}$ (a matrix):

1. $\boldsymbol{W}^{\mathbf{3}}{ }_{[0,:]}=\boldsymbol{W}^{\mathbf{1}}{ }_{[0, \mathrm{j}]} \cdot \boldsymbol{W}^{\mathbf{2}}=[4,2,3] \cdot\left[\begin{array}{llll}2 & 1 & 2 & 2 \\ 1 & 2 & 1 & 1 \\ 3 & 3 & 3 & 2\end{array}\right]=[19,17,19,16]$
2. $\boldsymbol{W}^{\mathbf{3}}{ }_{[1,:]}=\boldsymbol{W}^{\mathbf{1}}{ }_{[1,:]} \cdot \boldsymbol{W}^{\mathbf{2}}=[3,2,1] \cdot\left[\begin{array}{cccc}2 & 1 & 2 & 2 \\ 1 & 2 & 1 & 1 \\ 3 & 3 & 3 & 2\end{array}\right]=[11,10,11,10]$ 3. etc...

5.3 Properties of matrix multiplication

- Matrix multiplication is not commutative:
$\boldsymbol{W}^{1} \cdot \boldsymbol{W}^{2} \neq \boldsymbol{W}^{2} \cdot \boldsymbol{W}^{1}$
- Matrix multiplication is associative:
$\boldsymbol{W}^{1} \cdot \boldsymbol{W}^{2} \cdot \boldsymbol{W}^{3}=\boldsymbol{W}^{1} \cdot\left(\boldsymbol{W}^{2} \cdot \boldsymbol{W}^{3}\right)=\left(\boldsymbol{W}^{1} \cdot \boldsymbol{W}^{2}\right) \cdot \boldsymbol{W}^{3}$

