Linear Algebra Cheatsheet

UiO Language Technology Group

1 Basics of vectors and matrices

1.1 Matrices

- Matrix is a rectangular 2-dimensional array of numbers (scalars).
- $M \in \mathbb{R}^{m \times n}$ is a matrix M with m rows and n columns.
- For example:

$$oldsymbol{M} = egin{bmatrix} 1 & 2 & 3 & 4 \ 0 & 0 & 0 & 0 \ 4 & 3 & 2 & 1 \end{bmatrix}$$

• Here, *M* is a 3 × 4 matrix: it has 3 rows and 4 columns. 3 and 4 are the **dimensions** of *M*.

1.2 Entries

- Matrices consist of **entries**.
- $M_{i,j}$ or $M_{[i,j]}$ is the entry in the i^{th} row and j^{th} column of M.
- For example:

$$M_{0,0} = 1$$

• NB: we use 0-indexed notation, following *Python* conventions.

1.3 Vectors

- Vector is a $1 \times n$ matrix (NB: we use row vectors).
- $v \in \mathbb{R}^n$ is a vector v with n entries or components (*n*-dimensional vector).
- For example:

$$v = [4, 3, 2, 1]$$

- Here, \boldsymbol{v} is a 4-dimensional vector.
- \boldsymbol{v}_i or $\boldsymbol{v}_{[i]}$ is the i^{th} entry of the vector.
- For example:

$$v_1 = 3$$

2 Addition and scalar multiplication

2.1 Matrix addition

- Matrix addition is simply adding the entries of two or more matrices one by one.
- This summation results in another matrix:
- $M_0 + M_1 = M_2$
- For example:

 $\begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & 0 \\ 3 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 4 & 5 \\ 0 & 0 & 0 \\ 4 & 3 & 2 \end{bmatrix}$

- NB: we can add only matrices of the same dimensionality!
- The resulting matrix retains the same dimensions $(3 \times 3$ in the example above).
- One can *subtract* matrices in the same way.

2.2 Multiplication by scalar

- To **multiply a matrix by scalar** (a raw number), one also simply multiplies all its entries by this scalar.
- It results in another matrix of the same dimensionality.
- For example:

2	3	4		4	6	8]
0	0	0	$\times 2 =$	0	0	0
3	2	1		6	4	2

• Note that the multiplication of a matrix by a scalar and the multiplication of a scalar by a matrix are equal:

$\lceil 2 \rceil$	3	4		2	3	4		4	6	8]
0	0	0	$\times 2 = 2 \times$	0	0	0	=	0	0	0
3	2	1		3	2	1		6	4	2

• One can *divide* a matrix by a scalar in the same way:

2	3	4		1	1.5	2]
0	0	0	/2 =	0	0	0
3	2	1	•	1.5	1	0.5

• This essentially amounts to the scalar multiplication by fraction:

$\lceil 2 \rceil$	3	4		2	3	4	1	[1	1.5	2]
0	0	0	/2 =	0	0	0	$\times \frac{1}{2} =$	0	0	0
3	2	1		3	2	1	2	1.5	1	0.5

2.3 Miscellaneous

- All these *operations can be combined and sequenced together* as any other mathematical operations.
- Remember that a vector is simply a special kind of a matrix: thus, vectors can be added and multiplied by scalars in exactly the same way.

3 Vector to vector multiplication

- Vector to vector multiplication $(v \cdot x)$ is a special case of matrix-matrix multiplication.
- It is defined *only* if the dimensionalities of both vectors match: $\boldsymbol{v}, \boldsymbol{x} \in \mathbb{R}^n$
- The result of this multiplication is called the *inner product* or *dot product* and is a scalar:

 $\boldsymbol{v}\cdot\boldsymbol{x}=z$

• It is calculated as a sum of one-by-one multiplications of the corresponding entries of *v* and *x*:

$$z = \sum_{i=0}^{n} oldsymbol{v}_i imes oldsymbol{x}_i$$

- For example: $[2,0,2] \cdot [1,3,1] = 2 \times 1 + 0 \times 3 + 2 \times 1 = 2 + 0 + 2 = 4$
- As simple as that!

4 Vector to matrix multiplication

4.1 Requirements

- Vector to matrix multiplication $(v \cdot W)$ is also a special case of matrixmatrix multiplication.
- It is defined *only* if the dimensionality of the vector and the number of rows in the matrix match:
- $\boldsymbol{v} \in \mathbb{R}^m, \boldsymbol{W} \in \mathbb{R}^{m \times n}$
- ...more explicitly, the number of columns in the vector and the number of rows in the matrix must be identical:
- $\boldsymbol{v} \in \mathbb{R}^{1 \times m}, \boldsymbol{W} \in \mathbb{R}^{m \times n}$

4.2 Process

• The result of right-multiplying a vector $\boldsymbol{v} \in \mathbb{R}^m$ (or, equally, $\boldsymbol{v} \in \mathbb{R}^{1 \times m}$) by a matrix $\boldsymbol{W} \in \mathbb{R}^{m \times n}$ is a vector $\boldsymbol{y} \in \mathbb{R}^n$

 $- \boldsymbol{v} \cdot \boldsymbol{W} = \boldsymbol{y}$

- note how the matching dimensions m are 'self-destroyed'.
- Each component i of y is a sum of one-by-one multiplying columns of v by the entries of the i^{th} column of W.
- For example:

$$\boldsymbol{y} = \boldsymbol{v} \cdot \boldsymbol{W} = [2,3] \cdot \begin{bmatrix} 4 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} = [17, 10, 9]$$

1.
$$y_0 = v_0 \times W_{0,0} + v_1 \times W_{1,0} = 2 \times 4 + 3 \times 3 = 8 + 9 = 17$$

2. $y_1 = v_0 \times W_{0,1} + v_1 \times W_{1,1} = 2 \times 2 + 3 \times 2 = 4 + 6 = 10$

3.
$$y_2 = v_0 \times W_{0,2} + v_1 \times W_{1,2} = 2 \times 3 + 3 \times 1 = 6 + 3 = 9$$

• Here, the result is the 3-dimensional row vector $\boldsymbol{y} \in \mathbb{R}^3$.

5 Matrix to matrix multiplication

5.1 Matrix to matrix is another matrix

- Any row vector is in fact a $1 \times n$ matrix.
- Thus, to **multiply one matrix by another**, is conceptually the same as multiplying a vector by a matrix.
- Again, the number of columns in the left matrix W^1 must match the number of rows of the right matrix W^2 : $W^1 \in \mathbb{R}^{m \times n}, W^2 \in \mathbb{R}^{n \times z}$
- But the result of this multiplication is another matrix:
 W¹ ⋅ W² = W³ ∈ ℝ^{m×z}
 - Again, the matching dimensions n are 'self-destroyed'.

5.2 Process

• For example, suppose $W^1 \in \mathbb{R}^{2 \times 3}, W^2 \in \mathbb{R}^{3 \times 4}$:

$$\boldsymbol{W}^{3} = \boldsymbol{W}^{1} \cdot \boldsymbol{W}^{2} = \begin{bmatrix} 4 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 & 2 & 2 \\ 1 & 2 & 1 & 1 \\ 3 & 3 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 19 & 17 & 19 & 16 \\ 11 & 10 & 11 & 10 \end{bmatrix}$$

- Here, $W^3 \in \mathbb{R}^{2 \times 4}$
- It is produced like this:

– Each row *i* of W^3 is a product of multiplying the *i*th row of W^1 (a vector) by W^2 (a matrix):

1.
$$W^{3}_{[0,:]} = W^{1}_{[0,:]} \cdot W^{2} = [4, 2, 3] \cdot \begin{bmatrix} 2 & 1 & 2 & 2 \\ 1 & 2 & 1 & 1 \\ 3 & 3 & 3 & 2 \end{bmatrix} = [19, 17, 19, 16]$$

2. $W^{3}_{[1,:]} = W^{1}_{[1,:]} \cdot W^{2} = [3, 2, 1] \cdot \begin{bmatrix} 2 & 1 & 2 & 2 \\ 1 & 2 & 1 & 1 \\ 3 & 3 & 3 & 2 \end{bmatrix} = [11, 10, 11, 10]$
3. etc...

5.3 Properties of matrix multiplication

- Matrix multiplication is not commutative: $W^1 \cdot W^2 \neq W^2 \cdot W^1$
- Matrix multiplication is associative: $W^1 \cdot W^2 \cdot W^3 = W^1 \cdot (W^2 \cdot W^3) = (W^1 \cdot W^2) \cdot W^3$