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1 Basics of vectors and matrices

1.1 Matrices
• Matrix is a rectangular 2-dimensional array of numbers (scalars).

• M ∈ Rm×n is a matrix M with m rows and n columns.

• For example:

M =

1 2 3 4
0 0 0 0
4 3 2 1


• Here, M is a 3× 4 matrix: it has 3 rows and 4 columns. 3 and 4 are the
dimensions of M .

1.2 Entries
• Matrices consist of entries.

• Mi,j or M[i,j] is the entry in the ith row and jth column of M .

• For example:
M0,0 = 1

• NB: we use 0-indexed notation, following Python conventions.

1.3 Vectors
• Vector is a 1× n matrix (NB: we use row vectors).

• v ∈ Rn is a vector v with n entries or components (n-dimensional vector).

• For example:
v = [4, 3, 2, 1]

• Here, v is a 4-dimensional vector.

• vi or v[i] is the ith entry of the vector.

• For example:
v1 = 3
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2 Addition and scalar multiplication

2.1 Matrix addition
• Matrix addition is simply adding the entries of two or more matrices

one by one.

• This summation results in another matrix:

• M +M = M

• For example: 2 3 4
0 0 0
3 2 1

+

1 1 1
0 0 0
1 1 1

 =

3 4 5
0 0 0
4 3 2


• NB: we can add only matrices of the same dimensionality !

• The resulting matrix retains the same dimensions (3 × 3 in the example
above).

• One can subtract matrices in the same way.

2.2 Multiplication by scalar
• To multiply a matrix by scalar (a raw number), one also simply mul-

tiplies all its entries by this scalar.

• It results in another matrix of the same dimensionality.

• For example: 2 3 4
0 0 0
3 2 1

× 2 =

4 6 8
0 0 0
6 4 2


• Note that the multiplication of a matrix by a scalar and the multiplication

of a scalar by a matrix are equal:2 3 4
0 0 0
3 2 1

× 2 = 2×

2 3 4
0 0 0
3 2 1

 =

4 6 8
0 0 0
6 4 2


• One can divide a matrix by a scalar in the same way:2 3 4

0 0 0
3 2 1

 /2 =

 1 1.5 2
0 0 0
1.5 1 0.5


• This essentially amounts to the scalar multiplication by fraction:2 3 4

0 0 0
3 2 1

 /2 =

2 3 4
0 0 0
3 2 1

× 1

2
=

 1 1.5 2
0 0 0
1.5 1 0.5
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2.3 Miscellaneous
• All these operations can be combined and sequenced together as any other

mathematical operations.

• Remember that a vector is simply a special kind of a matrix: thus, vectors
can be added and multiplied by scalars in exactly the same way.

3 Vector to vector multiplication
• Vector to vector multiplication (v·x) is a special case of matrix-matrix

multiplication.

• It is defined only if the dimensionalities of both vectors match:

v,x ∈ Rn

• The result of this multiplication is called the inner product or dot product
and is a scalar:

v · x = z

• It is calculated as a sum of one-by-one multiplications of the corresponding
entries of v and x:

z =

n∑
i=0

vi × xi

• For example:

[2, 0, 2] · [1, 3, 1] = 2× 1 + 0× 3 + 2× 1 = 2 + 0 + 2 = 4

• As simple as that!

4 Vector to matrix multiplication

4.1 Requirements
• Vector to matrix multiplication (v·W ) is also a special case of matrix-

matrix multiplication.

• It is defined only if the dimensionality of the vector and the number of
rows in the matrix match:

• v ∈ Rm,W ∈ Rm×n

• ...more explicitly, the number of columns in the vector and the number of
rows in the matrix must be identical :

• v ∈ R1×m,W ∈ Rm×n
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4.2 Process
• The result of right-multiplying a vector v ∈ Rm (or, equally, v ∈ R1×m)

by a matrix W ∈ Rm×n is a vector y ∈ Rn

– v ·W = y

– note how the matching dimensions m are ‘self-destroyed’.

• Each component i of y is a sum of one-by-one multiplying columns of v
by the entries of the ith column of W .

• For example:

y = v ·W = [2, 3] ·
[
4 2 3
3 2 1

]
= [17, 10, 9]

1. y0 = v0 ×W0,0 + v1 ×W1,0 = 2× 4 + 3× 3 = 8 + 9 = 17

2. y1 = v0 ×W0,1 + v1 ×W1,1 = 2× 2 + 3× 2 = 4 + 6 = 10

3. y2 = v0 ×W0,2 + v1 ×W1,2 = 2× 3 + 3× 1 = 6 + 3 = 9

• Here, the result is the 3-dimensional row vector y ∈ R3.

5 Matrix to matrix multiplication

5.1 Matrix to matrix is another matrix
• Any row vector is in fact a 1× n matrix.

• Thus, to multiply one matrix by another, is conceptually the same as
multiplying a vector by a matrix.

• Again, the number of columns in the left matrix W 1 must match the
number of rows of the right matrix W 2:

W 1 ∈ Rm×n,W 2 ∈ Rn×z

• But the result of this multiplication is another matrix :

W 1 ·W 2 = W 3 ∈ Rm×z

– Again, the matching dimensions n are ‘self-destroyed’.

5.2 Process
• For example, suppose W 1 ∈ R2×3,W 2 ∈ R3×4:

W 3 = W 1 ·W 2 =

[
4 2 3
3 2 1

]
·

2 1 2 2
1 2 1 1
3 3 3 2

 =

[
19 17 19 16
11 10 11 10

]

• Here, W 3 ∈ R2×4

• It is produced like this:
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– Each row i of W  is a product of multiplying the ith row of W  (a
vector) by W  (a matrix):

1. W 
[0,:] = W 

[0,:] ·W  = [4, 2, 3]·

2 1 2 2
1 2 1 1
3 3 3 2

 = [19, 17, 19, 16]

2. W 
[1,:] = W 

[1,:] ·W  = [3, 2, 1]·

2 1 2 2
1 2 1 1
3 3 3 2

 = [11, 10, 11, 10]

3. etc...

5.3 Properties of matrix multiplication
• Matrix multiplication is not commutative:

W 1 ·W 2 6= W 2 ·W 1

• Matrix multiplication is associative:

W 1 ·W 2 ·W 3 = W 1 · (W 2 ·W 3) = (W 1 ·W 2) ·W 3
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