INF5830 – 2013 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning, Lecture 6, 24.9

Today & Thursday

- Word Sense Disambiguation (WSD)
- Classification
- Naive Bayes
- NB applied to WSD
 - Two approaches
- Evaluation
- Feature selection
- Smoothing

Word Sense Disambiguation

Word Senses

Word Net:

Noun

- S: (n) bass (the lowest part of the musical range)
- S: (n) bass, bass part (the lowest part in polyphonic music)
- S: (n) bass, basso (an adult male singer with the lowest voice)
- S: (n) sea bass, bass (the lean flesh of a saltwater fish of the family Serranidae)
- S: (n) <u>freshwater bass</u>, bass (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- S: (n) bass, bass voice, basso (the lowest adult male singing voice)
- S: (n) bass (the member with the lowest range of a family of musical instruments)
- S: (n) bass (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

Word Sense Disambiguation

Why?

- Dialogue system: fish vs. musical instrument
- Translation: Han bestilte en salt-bakt bass.
- Search: relevant hits only
- □ Speech synthesis: (Norw.) tapet, urte

How?

- Corpus-based methods
 - Unsupervised clustering
 - Supervised classification
- Dictionaries and Thesauri

Corpus-based

- Professor Emeritus Dag Østerberg doserer i klassisk byteori, og Knut Halvorsen fra Oslo Teknopol i synergieffektene mellom byer og forskningsmiljøer.
- Her sitter jeg på en bar, tenkte Harry, og hører på en transvestitt som doserer om australsk politikk.
- Han doserer teen etter tempoet i fortellingen hennes, ser ikke ned på den for å forvisse seg om at koppen er på rett kjøl, ser ufravendt på henne, henger ved hennes lepper - teen kommer av seg selv.
- Som doserer morfinen og holder en knivskarp balanse mellom bevissthet og smerteterskel .
- How to disambiguate?
- Use context

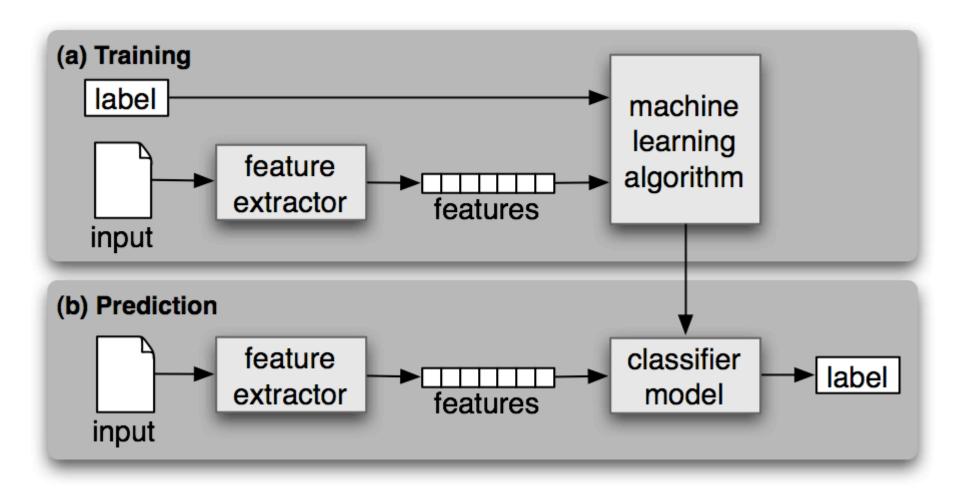
7 Classification

Classification

- Supervised:
 - □ Given classes
 - Examples
- Unsupervised:
 - Construct classes

- Supervised examples:
 - Spam
 - Word sense disambiguation
 - Genre of text
 - Language classification

Classification



A variety of classifiers

- k-Nearest Neighbors
- □ Rocchio
- Decision Trees
- □ Naive Bayes
- Maximum entropy (Logistic regression)
- Support Vector Machines

Supervised classification

- □ Given a well-defined set of objects, O
- \square A given set of classes, $S = \{s_1, s_2, ..., s_k\}$
- For training: a set of pairs from OxS
- \square Goal: a classifier, γ , a mapping from O to S

Task	0	S
Word sense disambiguation	Occurrences of "bass"	Sense1,, sense8
Spam classification	E-mails	Spam, no-spam
Language clssification	Pieces of text	Arabian, Chinese, English, Norwegian,

Features

□ To represent the objects in O, extract a set of features

Object: person
Features:
• height
• weight
• hair color
• eye color
• ...

Object: email
Features:
• length
• sender
• contained words
• language
•...

- □ Be explicit:
 - Which features
 - The value space for each feature

Supervised classification

- \square A given set of classes, $S = \{s_1, s_2, ..., s_k\}$
- A well defined class of objects, O

- \square Some features $f_1, f_2, ..., f_n$
- \square For each feature: a set of possible values $V_1, V_2, ..., V_n$
- \square The set of feature vectors: $V = V_1 \times V_2 \times ... \times V_n$
- □ Each object in O is represented by some member of V:
 - \square Written $(v_1, v_2, ..., v_n)$, or
 - \Box $(f_1 = v_1, f_2 = v_2, ..., f_n = v_n)$
- \square A classifier, γ , can be considered a mapping from V to S

Examples

Language classifier

- \Box C = {English, Norwegian,...}
- O is the set of strings of letters
- \Box f_1 is last letter of o
- $V_1 = \{a, b, c, ..., a\}$
- f₂ is the last two letters
- V₂ are all two letter combinations
- \Box f_3 is the length of o,
- \square V₃ is 1, 2, 3, 4, ...

Word sense disambiguation

- \Box C = {fish, music}
- O: all occurrences of "bass"
- $f_i = f_{wi}$: word w_i occurs in same sentence as "bass", where
 - $\mathbf{w}_1 = \text{fishing}, \mathbf{w}_2 = \text{big}, \dots,$
 - $\mathbf{v}_{11} = \mathbf{guitar}, \mathbf{v}_{12} = \mathbf{band}$
- Example:
 - $\circ = (0,0,0,1,0,0,0,0,0,0,1,0)$
 - $\circ = (f_{fish} = 1, ..., f_{quitar} = 1, f_{band} = 0)$

Naive Bayes

Naive Bayes: Decision

□ Given an object

$$\langle f_1 = v_1, f_2 = v_2, ..., f_n = v_n \rangle$$

- Consider
 - $P(s_m \mid \langle f_1 = v_1, f_2 = v_2, ..., f_n = v_n \rangle)$ for each class sm
- Choose the class with the largest value, in symbols

$$\underset{s_{m} \in S}{\operatorname{arg\,max}} \ P(s_{m} \mid \langle f_{1} = v_{1}, f_{2} = v_{2}, ..., f_{n} = v_{n} \rangle)$$

Naive Bayes: Model

Bayes formula

$$P(s_m \mid \langle f_1 = v_1, f_2 = v_2, ..., f_n = v_n \rangle) = \frac{P(\langle f_1 = v_1, f_2 = v_2, ..., f_n = v_n \rangle \mid s_m) P(s_m)}{P(\langle f_1 = v_1, f_2 = v_2, ..., f_n = v_n \rangle)}$$

- Sparse data, we may not even have seen
 - $\langle f_1 = v_1, f_2 = v_2, ..., f_n = v_n \rangle$
- Assume (wrongly) independence
 - $P(\langle f_1 = v_1, f_2 = v_2, ..., f_n = v_n \rangle | s_m) \approx \prod_{i=1}^n P(f_i = v_i | s_m)$
- Putting together
 - $\arg\max_{s_m \in S} P(s_m \mid \langle f_1 = v_1, f_2 = v_2, ..., f_n = v_n \rangle) \approx \arg\max_{s_m \in S} P(s_m) \prod_{i=1}^n P(f_i = v_i \mid s_m)$

Naive Bayes: Calculation

$$\arg\max_{s_m \in S} P(s_m \mid \langle f_1 = v_1, f_2 = v_2, ..., f_n = v_n \rangle) \approx \arg\max_{s_m \in S} P(s_m) \prod_{i=1}^n P(f_i = v_i \mid s_m)$$

- For calculations
 - avoid underflow, use logarithms
 - $\underset{s_m \in S}{\operatorname{arg\,max}} P(s_m) \prod_{i=1}^n P(f_i = v_i \mid s_m) = \underset{s_m \in S}{\operatorname{arg\,max}} \left(\log \left(P(s_m) \prod_{i=1}^n P(f_i = v_i \mid s_m) \right) \right)$

Naive Bayes: Calculation

$$\arg \max_{s_m \in S} P(s_m \mid \langle f_1 = v_1, f_2 = v_2, ..., f_n = v_n \rangle) \approx \arg \max_{s_m \in S} P(s_m) \prod_{i=1}^n P(f_i = v_i \mid s_m)$$

- For calculations
 - avoid underflow, use logarithms

Naive Bayes: Training

Maximum Likelihood

$$\hat{P}(s_m) = \frac{C(s_m, o)}{C(o)}$$

 \square where $C(s_m, o)$ are the number of occurrences of objects o in class s_m

$$\hat{P}(f_i = v_i \mid s_m) = \frac{C(f_i = v_i, s_m)}{C(s_m)}$$

- where $C(f_i=v_i, s_m)$ are the number of occurrences of objects o
 - where the object o belongs to class s_m
 - and the feature f_i takes the value v_i
- \square C(s_m) are the number of occurrences belonging to class s_m
- Observe: this is different from FSNLP
- + smoothing: Thursday

Data

