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Today & Thursday 

 Word Sense Disambiguation (WSD) 
 Classification 
 Naive Bayes 
 NB applied to WSD 

 Two approaches 

 Evaluation 
 Feature selection 
 Smoothing 
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Word Sense Disambiguation 3 



Word Senses 

Word Net: 
Noun 
 S: (n) bass (the lowest part of the musical range)  
 S: (n) bass, bass part (the lowest part in polyphonic music)  
 S: (n) bass, basso (an adult male singer with the lowest voice)  
 S: (n) sea bass, bass (the lean flesh of a saltwater fish of the family 

Serranidae)  
 S: (n) freshwater bass, bass (any of various North American freshwater fish 

with lean flesh (especially of the genus Micropterus))  
 S: (n) bass, bass voice, basso (the lowest adult male singing voice)  
 S: (n) bass (the member with the lowest range of a family of musical 

instruments)  
 S: (n) bass (nontechnical name for any of numerous edible marine and 

freshwater spiny-finned fishes)  
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http://wordnet.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=bass&i=0&h=000000000�
http://wordnet.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=bass&i=1&h=000000000�
http://wordnet.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=bass+part�
http://wordnet.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=bass&i=2&h=000000000�
http://wordnet.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=basso�
http://wordnet.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=bass&i=3&h=000000000�
http://wordnet.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=sea+bass�
http://wordnet.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=bass&i=4&h=000000000�
http://wordnet.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=freshwater+bass�
http://wordnet.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=bass&i=5&h=000000000�
http://wordnet.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=bass+voice�
http://wordnet.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=basso�
http://wordnet.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=bass&i=6&h=000000000�
http://wordnet.princeton.edu/perl/webwn?o2=&o0=1&o7=&o5=&o1=1&o6=&o4=&o3=&s=bass&i=7&h=000000000�


Word Sense Disambiguation 

Why? 
 Dialogue system: fish vs. musical instrument 
 Translation: Han bestilte en salt-bakt bass. 
 Search: relevant hits only 
 Speech synthesis: (Norw.) tapet, urte 

 

How? 
 Corpus-based methods 

 Unsupervised – clustering 
 Supervised – classification 

 Dictionaries and Thesauri 
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Corpus-based 

 Professor Emeritus Dag Østerberg   doserer   i klassisk byteori , 
og Knut Halvorsen fra Oslo Teknopol i synergieffektene mellom 
byer og forskningsmiljøer .  

 Her sitter jeg på en bar , tenkte Harry , og hører på en 
transvestitt som   doserer   om australsk politikk .  

 Han   doserer   teen etter tempoet i fortellingen hennes , ser ikke 
ned på den for å forvisse seg om at koppen er på rett kjøl , ser 
ufravendt på henne , henger ved hennes lepper - teen kommer 
av seg selv .  

 Som   doserer   morfinen og holder en knivskarp balanse mellom 
bevissthet og smerteterskel .  
 

 How to disambiguate? 
 Use context 
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Classification 

 Supervised: 
 Given classes 
 Examples 

 Unsupervised: 
 Construct classes 

 Supervised examples: 
 Spam 
 Word sense 

disambiguation 
 Genre of text 
 Language classification 
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Classification 
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} INF4820 
 k-Nearest Neighbors 
 Rocchio 
 Decision Trees 
 Naive Bayes 
 Maximum entropy (Logistic regression) 
 Support Vector Machines 

 

A variety of classifiers 
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Supervised classification 

 Given a well-defined set of objects, O 
 A given set of classes, S={s1, s2, …, sk} 
 For training: a set of pairs from OxS 
 Goal: a classifier, γ, a mapping from O to S 

 
Task O S 

Word sense disambiguation Occurrences of ”bass” Sense1, …, sense8 

Spam classification E-mails Spam, no-spam 

Language clssification Pieces of text Arabian, Chinese, English, 
Norwegian, … 
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Features 

 To represent the objects in O, extract a set of features 

 Be explicit: 
 Which features 
 The value space for each feature 

Object: person 
Features: 
• height 
• weight 
• hair color 
• eye color 
• … 

Object: email 
Features: 
• length 
• sender 
• contained words 
• language 
•…  
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Supervised classification 

 A given set of classes, S={s1, s2, …, sk} 
 A well defined class of objects, O 

 

 Some features f1, f2, …, fn 

 For each feature: a set of possible values V1, V2, …, Vn 
 The set of feature vectors: V= V1× V2×…× Vn 
 Each object in O is represented by some member of V: 

 Written (v1, v2, …, vn), or 
  (f1=v1, f2=v2, …, fn=vn) 

 A classifier, γ, can be considered a mapping from V to S 
 



Examples 

 C = {English, Norwegian,…} 
 O is the set of strings of 

letters 
 f1 is last letter of o 
 V1= {a, b, c,…, å} 
 f2 is the last two letters 
 V2 are all two letter 

combinations 
 f3 is the length of o,  
 V3 is 1, 2, 3, 4, … 

 

 C = {fish, music} 
 O: all occurrences of ”bass” 
 fi= fwi: word wi occurs in same 

sentence as ”bass”, where 
 w1 = fishing, w2 = big, …,  
 w11 = guitar, w12 = band 

 V1=V2=…=V12={1,0} 
 Example: 

 o = (0,0,0,1,0,0,0,0,0,0,1,0) 
 o =  

(ffish=1, …, fguitar=1, fband=0) 

Language classifier Word sense disambiguation 
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Naive Bayes: Decision 
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 Given an object 
   

 Consider   
                                           for each class sm 

 Choose the class with the largest value, in symbols 
 

nn vfvfvf === ,...,, 2211

( )nnm vfvfvfsP === ,...,,| 2211

( )nnm
Ss

vfvfvfsP
m

===
∈

,...,,|maxarg 2211



Naive Bayes: Model 
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 Bayes formula 
   

 
 Sparse data, we may not even have seen 

   
 

 Assume (wrongly) independence 
   

 
 Putting together 
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Naive Bayes: Calculation 
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 For calculations 
  avoid underflow, use logarithms 
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Naive Bayes: Calculation 
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 For calculations 
  avoid underflow, use logarithms 
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Naive Bayes: Training 
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 Maximum Likelihood 
   

 
 where C(sm, o) are the number of occurrences of objects o in class sm 

   
 

 where C(fi=vi, sm) are the number of occurrences of objects o  
 where the object o belongs to class sm 
 and the feature fi takes the value vi 

 C(sm) are the number of occurrences belonging to class sm 
 Observe: this is different from FSNLP 
 + smoothing: Thursday 
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Data 
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