INF5830 — 2013, Obligatory assignments, set 2
Part B

To be delivered by Oct. 16, 18:00 (6 p.m.)

Observe, this is the second part of obligatory assignment 2. There
is also a part A. Both parts should be completed!

3 Word Sense Disambiguation and Naive Bayes
Classification

The staring point is section 6.1 in the nltk book, in particular the subsection
called Document Classification. You're advised to work through chapter 6
up to and including this section. You should also consider section 6.3 on
Evaluation and in particular the subsection on confusion matrices.

a) We will use the famous “line-hard-serve” corpus for word sense disam-
biguation. It contains training data for one noun, one adjective and
one verb. For each, a number of sentences containing the word (from
the Brown corpus and elsewhere) has been selected. Each occurrence
is tagged with a Wordnet sense.

Your task is for each of the three words, to construct a Word Sense
Disambiguator using the Naive Bayes method. You may use the built-
in methods of the NLTK. For each of the three, you should report
the accuracy and print a confusion matrix. You should also report a
baseline for the classifier.

You may model much of what you are doing on the subsection on
document classification from section 6.1 of the NLTK book. But they
are a little sloppy there. They select word features before they split
the corpus into training and testing. It is more correct to first split
into training and testing (and development) and only use the training
corpus for the selection of word features.

The “line-hard-serve” corpus comes as part of the NLTK data. It is
accessed through

nltk.corpus.senseval.<method>
Try
nltk.corpus.senseval.fileids()

We may read the relevant part of the corpus for each of the three tasks
like



>>>

1=nltk.corpus.senseval.instances(’hard.pos’)

>>> type(1)
<class ’nltk.corpus.reader.senseval.SensevalCorpusView’>

>>>

But since this is an unfamiliar class, it is more convenient to start the
project by reading this into a list which we may manipulate further.

>>>
>>>
>>>
>>>
>>>

1 = [i for i in nltk.corpus.senseval.instances(’hard.pos’)]
random. shuffle(1l)

examples_train = 1[1000:]

examples_test = 1[:500]

examples_dev = 1[500:1000]

You should also familiarize yourself with the instances in the list (item
in the example) and their attributes.

>>>
>>>
>>>
>>>
>>>
>>>

item = examples_train[0]
item

item.senses
item.position
item.context

item.word

Then you are all set.

We will in the following only consider the classifier for “line”. Suppose
you are only interested in whether it classifies the “product” sense
correctly or not. You do not have to construct a new classifier for
this, only evaluate how well your current classifier solves this task.
What is the recall, precision and accuracy of your classifier considered
as a binary classifier in this respect? You may answer this from the
confusion matrix. What is the baseline for this classifier?

The document classifier in the nltk book has made many choices, we
will consider the effect of some of them. We will first consider the
effect of the size of the set of word features. They use 2000 words.
Try what happens when you use 10, 20, 50, 100, 200, 500, 1000, 2000,
5000 words. We will only make one experiment for each of the set of
word features. Here you should use the same training set and test set
for all the experiments. You should hand in a table which shows the
accuracy results for each choice of size of word features. What do you
read from the table?



d) (Optional, but fun:) We have so far chosen the feature words from
frequency, but are there smarter ways to choose them? The classi-
fier.show_most_informative_features() example in the book shows that
some features are more important than others. Now choose your fea-
ture words in a smart way and see what you can achieve with 10, 20,
50, 100, 200, 500 words as features.

You may consider what you get with the command classifier.most_infor-
mative_features(), or you may choose some other association measure.

You should hand in a table with results for the different number of
features.

The end



