
INF5830, 2015, Group 3 – 17.9
I expect that not everybody has completed the obligatory assignment before class. They may prefer to
work on the assignment. But for they who have completed the assignment, or are near completion, or
prefer to take a break from the oblig., we offer the following. And everybody should complete the
following set – sooner or later (before next oblig.)

NumPy and SciPy
We have made a short description of some of the functionality of NumPy and SciPy. You are advised to
work your way throught the paper, running the examples, up to T-distribution. You may then use SciPy
to check some of your solutions to the obligatory assignment.

Tools for tokenization and normalization
Jurafsky and Martin, SLP, 3 ed. includes a subsection called “2.3.1 Unix tools for crude tokenization and
normalization.” This is based on Ken Church’ famous Unix for Poets from 1994. It illustrates the efficiency
of some Unix/Linux commands. It illustrates one possible approach to working with texts. Another
approach, which is more in the line of the rest we are doing, is to do everything within (interactive)
Python. Solve the same task in Python with the help of NLTK.

Conditional frequencies
When we have a tagged text, we may be interested in for each word which tags it may take and how
frequent the different tags are. We will use the full Brown corpus and the ‘universal’ tagset. See the
NLTK book, 2.ed, ch. 5 sec. 2.2 http://www.nltk.org/book/ch05.html.

a) Make a conditional frequency distribution which to each word form yields a frequency
distribution of the tags it may take. Thus, for example
 word_tag['run']['NOUN']
may return 52 (or some other number).

b) We will then consider probabilities instead of absolute numbers. Make a conditional frequency
distribution which to a word and a tag returns the probability that the word gets this tag. The
result now might be something like
 >>> prob_word_tag['run']['NOUN']
 >>> 0.2524271844660194

c) In HMM-tagging, even though our goal is to find the most probable tag given a word, what we
actually use is the probability of the word given the tag. Now implement a conditional frequency
distribution which to each tag yields a frequency distribution over words, e.g.,
 >>> tag_word['NOUN'][‘run’]
>>> 52

d) Then turn this into relative frequencies, i.e., given a tag it should yield a probability distribution
for the words that take this tag.

THE END

http://www.nltk.org/book/ch05.html

	INF5830, 2015, Group 3 – 17.9
	NumPy and SciPy
	Tools for tokenization and normalization
	Conditional frequencies

