## INF5830-2015 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning, Lecture 3, 1.9

## Today: More statistics

$\square$ Binomial distribution
$\square$ Continuous random variables/distributions
$\square$ Normal distribution
$\square$ Sampling and sampling distribution
$\square$ Statistics
$\square$ Hypothesis testing
$\square$ Estimation
$\square$ Known and unknown standard deviation

## Last week - Probability theory

$\square$ Probability space
$\square$ Random experiment (or trial) (no: forsøk)
$\square$ Outcomes (utfallene)
$\square$ Sample space (utfallsrommet)
$\square$ An event (begivenhet)
$\square$ Bayes theorem
$\square$ Discrete random variable

- The probability mass function, pmf
- The cumulative distribution function, cdf
$\square$ The mean (or expectation) (forventningsverdi)
$\square$ The variance of a discrete random variable $X$
$\square$ The standard deviation of the random variable

Discrete random variables

## Mean of a discrete random variable

$\square$ The mean (or expectation) (forventningsverdi) of a discrete random variable $X$ :

$$
\mu_{X}=E(X)=\sum_{x} p(x) x
$$

$\square$ Useful to remember

$$
\begin{aligned}
& \mu_{(X+Y)}=\mu_{X}+\mu_{Y} \\
& \mu_{(a+b X)}=a+b \mu_{x}
\end{aligned}
$$

Examples:
One dice: 3.5
Two dices: 7
Ten dices: 35

## Example


$\square$ Throwing a dice until you get 6
$\square \quad \mathrm{P}($ odd $)=$ ?
$\square \quad \operatorname{pmf}(n)=\frac{1}{6}\left(\frac{5}{6}\right)^{(n-1)}, n \geq 1$
$\square P($ even $)=P($ odd $) * 5 / 6$
$\square P($ even $)+P($ odd $)=1$

## More than mean

$\square$ Mean doesn't say everything
$\square$ Example
$\square$ (1.3) The sum of the two dice, Z, i.e.
$p_{z}(2)=1 / 36, \ldots, p_{z}(7)=6 / 36$ etc
$\square$ (3.2) $p_{2}$ given by:

- $p_{2}(7)=1$
- $p_{2}(x)=0$ for $x \neq 7$
$\square$ (3.3) $p_{3}$ given by:

$$
p_{3}(x)=1 / 11 \text { for } x=2,3, \ldots, 12
$$

$\square$ Have the same mean but are very different


## Variance

$\square$ The variance of a discrete random variable $X$

$$
\operatorname{Var}(X)=\sigma^{2}=\sum_{x} p(x)(x-\mu)^{2}
$$

$\square$ Observe that

$$
\operatorname{Var}(X)=E\left((X-E(X))^{2}\right)
$$

$\square$ It may be shown that this equals $E\left(X^{2}\right)-(E(X))^{2}$
$\square$ The standard deviation of the random variable

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

## Examples of variance

$\square$ Throwing one dice
$\square \mu=(1+2+. .+6) / 6=7 / 2$
$\square \sigma^{2}=\left((1-7 / 2)^{2}+(2-7 / 2)^{2}+\ldots(6-7 / 2)^{2}\right) / 6=$ $(25+9+1) / 4 * 3=35 / 12$
$\square$ (Ex 1.3) Throwing two dice: $\sigma^{2}=35 / 6$
$\square(E x 3.2) p_{2}$, where $p_{2}(7)=1$ has variance 0
$\square$ (Ex 3.3) $\mathrm{p}_{3}$, the uniform distribution, has variance:
$\square\left((2-7)^{2}+\ldots(12-7)^{2}\right) / 11=(25+16+9+4+1+0) * 2 / 11=10$

## Probability distributions

Sannsynlighetsfordelinger

## Examples of distributions

$\square$ (1.3) The sum of the two dice, $Z$, i.e.
$\square p_{z}(2)=1 / 36, \ldots, p_{z}(7)=6 / 36$ etc
$\square$ (3.2) $p_{2}$ given by:
$\square p_{2}(7)=1$
$\square p_{2}(x)=0$ for $x \neq 7$
$\square$ (3.3) $p_{3}$ given by:

- $p_{3}(x)=1 / 11$ for $x=2,3, \ldots, 12$




## Bernoulli trial

$\square$ One experiment, two outcomes
$\square \Omega_{\mathrm{x}}=\{0,1\}$
$\square$ Write p for $\mathrm{p}(1)$
$\square$ Then $p(0)=1-p$

## Examples:

- Flipping a fair coin, $p=1 / 2$
- Rolling a dice, getting a 6, $p=1 / 6$
$\square$ The mean/expectation: $0 * p(0)+1 * p(1)=0+p=p$
$\square$ Variance $\operatorname{Var}(X)=\sigma^{2}=\sum_{x} p(x)(x-\mu)^{2}=$


## Bernoulli trial

$\square$ One experiment, two outcomes
$\square \Omega_{\mathrm{x}}=\{0,1\}$
$\square$ Write p for $\mathrm{p}(1)$
$\square$ Then $p(0)=1-p$

## Examples:

- Flipping a fair coin, $p=1 / 2$
- Rolling a dice, getting a $6, p=1 / 6$
$\square$ The mean/expectation: $0 * p(0)+1 * p(1)=0+p=p$
$\square$ Variance $\operatorname{Var}(X)=\sigma^{2}=\sum_{x} p(x)(x-\mu)^{2}=$

$$
(1-p)(0-p)^{2}+p(1-p)^{2}=p(1-p)
$$

## Binomial distribution

$\square$ Binomial distribution (binomisk fordeling)
$\square$ Conducting $n$ Bernoulli trials with the same probability and counting the number of successes

Example flipping a fair coin $n$ times, $p(k)$ :

$$
\begin{aligned}
& \text { ㅁ } n=2: p(0)=1 / 4, p(1)=1 / 2, p(2)=1 / 4 \\
& n=3: p(0)=1 / 8, p(1)=3 / 8, p(2)=3 / 8, p(3)=1 / 8 \\
& n=4:(1,4,6,4,1) / 16 \\
& n=5:(1,5,10,5,1) / 32
\end{aligned}
$$

$\mathrm{n}: \quad p(k)=\binom{n}{k}\left(\frac{1}{2}\right)^{n} \quad$ where $\quad\binom{n}{k}=\frac{n!}{k!(n-k)!}$

## Binomial distribution

$\square$ Binomial distribution (binomisk fordeling)
$\square$ General form:
$\square 0<p<1$
$\square n$ a natural number
$\square \mathrm{B}(\mathrm{n}, \mathrm{p})$ is given by $\quad b(k ; n, p)=\binom{n}{k} p^{k}(1-p)^{(n-k)}$
for $\mathrm{k}=0,1, \ldots \mathrm{n}$, where $\quad\binom{n}{k}=\frac{n!}{k!(n-k)!}$

## Binomial distribution

Wahrscheinlichkeit

$\square \mathrm{n}=20$
$\square \mathrm{p}=0.1$ (blue), $\mathrm{p}=0.5$ (green) and $\mathrm{p}=0.8$ (red)

## Binomial distribution

$\square$ Mean/expectation, $\mu$, of $\mathrm{B}(\mathrm{n}, \mathrm{p})$ is np
$\square$ n Bernoulli trials
$\square$ Each Bernoulli trial has mean $p$
$\square$ The variance is $\mathrm{np}(1-\mathrm{p})$
$\square$ Because the Bernoulli trials are independent
$\square$ Each Bernoulli trial has variance p(1-p)

The variance of the sum of two independent random variables is the sum of their variances

$\square$ The relative variation gets smaller with growing N
$\square$ The pmf graph approaches a bell shape

## Think about

$\square$ Flip a coin 10 times, count the number of heads
$\square$ You expect 5 heads, but not exactly 5

- 6 is OK
$\square$ When do you start to worry whether the coin is unfair?
$\square 8$ heads?
$\square 9$ heads?
$\square$ This is the task for inferential statistics


## Tossing a fair(?) coin

$\square$ The cumulative distribution function:
"How likely is it to get N or fewer tails?'"
$10:$


| N | $\operatorname{pmf}(\mathrm{N})$ | $\operatorname{cdf}(\mathrm{N})$ |
| :---: | :--- | :--- |
| 0 | 0.001 | 0.001 |
| 1 | 0.010 | 0.011 |
| 2 | 0.044 | 0.055 |
| 3 | 0.117 | 0.172 |
| 4 | 0.205 | 0.377 |
| 5 | 0.246 | 0.623 |
| 6 | 0.205 | 0.828 |
| 7 | 0.117 | 0.945 |
| 8 | 0.044 | 0.989 |
| 9 | 0.010 | 0.999 |
| 10 | 0.001 | 1.000 |

## SciPy

$\square$ import scipy
$\square$ from scipy import stats
$\square \operatorname{bin} 10=$ stats.binom $(10,0.5) \# N=10, p=0.5$
$\square$ bin10.pmf(3) \# probability mass of 3
$\square \operatorname{bin} 10 . c d f(3)$ \# cumulative distribution function at 3
$\square$ bin10.var() \# variance
$\square$ bin10.std() \# standard deviation

## Continuous random variables

$\square \mathrm{P}(\mathrm{X}=\mathrm{a})=0$ for all values a
$\square$ The probability mass function does not make sense
$\square$ The cumulative distribution function, cdf, given by $F(a)=P(X \leq a)$ makes sense
$\square P(a \leq x \leq b)=F(b)-F(a)$
$\square$ To calculate expectation and variance we must use integration instead of (infinite) sums.
$\square$ We skip the details!

## Probability density function



$\square$ The derivative of the cdf, $\mathrm{F}^{\prime}$, is called the probability density function, pdf (sannsynlighetstetthet)
$\square$ We draw curves for pdf-s
$\square$ The pdf has a similar relationship to the cdf in the continuous case as the pma has in the discrete case

## The normal distribution



$$
\begin{aligned}
& \text { z-score relates the } \\
& \text { general case to the } \\
& \text { standard case }
\end{aligned}
$$

Scary formula

Important

| Mean | 0 | $\mu$ |
| :--- | :--- | :--- |
| Standard deviation | 1 | $\sigma$ |

## 68\%-95\%-99.7\%



## Example <br> $$
Z=\frac{x-\mu}{\sigma}
$$

$\square$ Tallness of Norwegian young men (rough numbers):
$\square \mu=180 \mathrm{~cm}$
$\square \sigma=6 \mathrm{~cm}$
$\square z=(186-180) / 6=1$
(standard deviation)

- ( $100-68$ ) $/ 2 \%=$
$16 \%$ are taller than 186 cm

$\square$ How many are taller than 190 cm ?
$\square z=(190-180) / 6=1.67$
$\square$ Prob. $=0.0475$ (from table or software)


## Sampling distribution

Utvalgsfordeling

## Sampling - empirically

## Goal:

$\square$ make assertions about a whole population
$\square$ from observations of a sample (utvalg)
$\square$ A simple random sample (SRS) (tilfeldig utvalg):

1. Each individual has equal chance of being chosen (unbiased/forventningsrett)
2. Selection of the various individuals are independent
$\square$ Not as simple as it sounds (c.f. the current election polls):
$\square$ Various methods to rescue
$\square$ E.g. choose from known groups, weigh by group size (gender, age, home town, etc.)

## Sampling in Language Technology

$\square$ You want to take a simple random sample of words from a corpus?
$\square$ Can you use the $n$ first sentences?
$\square$ Can you use a random sample of $n$ sentences?
$\square$ How can you build a corpus (sample) which gives a random sample of Norwegian texts?

## Sampling distributions - Example

- Height: X
- assume $N(180,6)$
- (Var=36)
- Randomly choose 100.
$\square$ Add their heights:

$$
S=X_{1}+X_{2}+\ldots+X_{n}
$$

$\square$ A new random variable (all such samples)
$\square \operatorname{Exp}(S)=n^{*} \mu=18000(\mathrm{~cm})$
$\square \operatorname{Var}(S)=100^{*} \operatorname{Var}(X)=3600$

- $\sigma_{S}=10 \times \sigma_{X}=60(\mathrm{~cm})$



## Sampling distributions - Example

- Height: X
- assume $N(180,6)$
- (Var=36)
- Randomly choose 100.
$\square$ Add their heights: $\mathrm{S}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{n}}$
$\square$ A new random variable (all such samples)
- $\operatorname{Exp}(S)=n * \mu=18000(c m)$
- $\operatorname{Var}(\mathrm{S})=100 * \operatorname{Var}(\mathrm{X})=3600$
- $\sigma_{S}=10 \times \sigma_{X}=60(\mathrm{~cm})$
$\square$ The mean of the samples:
$\square \overline{\mathrm{X}}=\mathrm{S} / \mathrm{n}$
- A new random variable (all such means of samples of 100)
- $\operatorname{Exp}(\mathrm{S})=\mu=180(\mathrm{~cm})$
$\square \sigma_{\bar{X}}=\frac{1}{100} \times \sigma_{S}=0.6(\mathrm{~cm})$


## Sampling distributions

## Let

$\square X$ be a random variable for a population with exp: $\mu$, std: $\sigma$
$\square$ Let $S=X_{1}+X_{2}+\ldots+X_{n}$ i.e. each $X_{i}$ equals $X$
$\square$ Let: $\bar{X}=S / n$

## Then:

$\square \operatorname{Exp}(S)=n^{*} \mu$
$\square \operatorname{Exp}(\bar{X})=\mu$
$\operatorname{Var}(S)=\sigma_{S}^{2}=n \times \operatorname{Var}(X)=n \times \sigma_{X}^{2}$
$\operatorname{Var}(\bar{X})=\sigma_{\bar{X}}^{2}=\frac{1}{n^{2}} \times \operatorname{Var}(S)=\frac{1}{n} \times \sigma_{X}^{2}$
ㅁ

$$
\sigma_{\bar{X}}=\frac{1}{\sqrt{n}} \times \sigma_{X}
$$

## Effect of sample size

| Sample size | 1 | 4 | 16 | 100 | 400 | 1600 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard dev. | 6 | 3 | 1.5 | 0.6 | 0.3 | 0.15 |

## The form of the distribution

$\square$ If the Xi -s are independent and normally distributed, then $\bar{X}$ is normally distributed (as expected)
$\square$ (More surprisingly) Even though the Xi-s are not normally distributed: for large $n$-s, the sample distribution is approximately normal
$\square=$ Central Limit Theorem

## Example: throwing the dice until a 6

Number of samples: 1000


$$
\text { Binomial distribution } \quad b(k ; n, p)=\binom{n}{k} p^{k}(1-p)^{(n-k)}
$$

Population: all Bernoulli trials with probability p.
Sample: $n$ such trials
Example: Throwing a dice $n$ times, counting the number of 6 -s (success)

- Number of successes: X
$\square$ Random variable over all series of $n$ trials
- Binomial distribution (binomisk fordeling): $B(n, p)$
- $E(X)=n p$
- $\operatorname{Var}(X)=n p(1-p)$

$$
\sigma_{X}=\sqrt{n p(1-p)}
$$

$\square$ Approximated by $\mathrm{N}(n p, \sqrt{n p(1-p)}$ ) for large n

Rule of thumb:

$$
n p>10 \text { and }
$$ $\mathrm{n}(1-\mathrm{p})>10$

- Proportion of success: $\hat{p}=X / n$
$\square E(\hat{p})=E(X / n)=n p / n=p$
$\operatorname{Var}(\hat{p})=\sigma_{X}^{2} / n^{2}=$
$n p(1-p) / n^{2}=p(1-p) / n$
$\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}=\frac{\sigma_{Y}}{\sqrt{n}}$
- Approximated by $N(p, \sqrt{p(1-p) / n})$ for large $n$


## Example

$\square$ Example:
$\square \mathrm{p}=0.8$

You have a classifier which you think is 80 \% correct.
What can you expect of this classifier from samples of various sizes?

| N | $E(X)$ | $\begin{aligned} & \operatorname{Var}(X \\ & \text { ) } \end{aligned}$ | SD(X) | $\mu \pm 2 \sigma$ | $\begin{aligned} & E(\hat{p}) \\ & =E(X / n) \end{aligned}$ | $\operatorname{Var}(\hat{p})$ | $S D(\hat{p})$ | $\mu \pm 2 \sigma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.8 | 0.16 | 0.4 |  | 0.8 | 0.16 | 0.4 |  |
| 25 | 20 | 4 | 2 |  | 0.8 | 0.0064 | 0.08 |  |
| 100 | 80 | 16 | 4 | [72, 88] | 0.8 | 0.0016 | 0.04 | [.72,.88] |
| 2500 | 2000 | 400 | 20 | [1960, 2040] | 0.8 | 0.000064 | 0.008 |  |
| 10000 | 8000 | 1600 | 40 | [7920,8080] | 0.8 | 0.000016 | 0.004 | [.792,.808] |

