INF5830 – 2015 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning, Lecture 3, 1.9

Today: More statistics

- Binomial distribution
- Continuous random variables/distributions
- Normal distribution
- Sampling and sampling distribution
- Statistics
 - Hypothesis testing
 - Estimation
 - Known and unknown standard deviation

Last week – Probability theory

Probability space

- Random experiment (or trial) (no: forsøk)
- Outcomes (utfallene)
- Sample space (utfallsrommet)
- An event (begivenhet)
- Bayes theorem
- Discrete random variable
 - The probability mass function, pmf
 - The cumulative distribution function, cdf
 - The mean (or expectation) (forventningsverdi)
 - The variance of a discrete random variable X
 - The standard deviation of the random variable

Discrete random variables

Mean of a discrete random variable

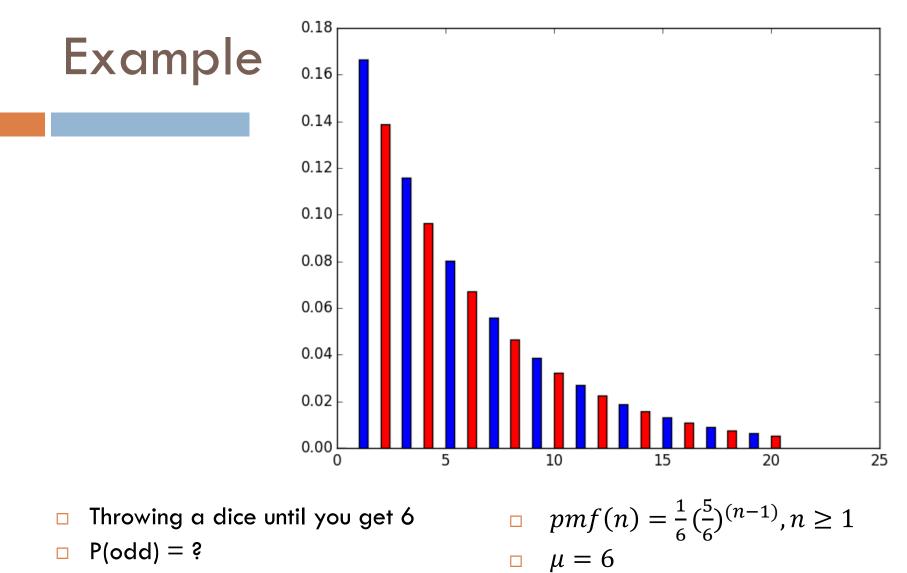
The mean (or expectation) (forventningsverdi) of a discrete random variable X:

$$\mu_X = E(X) = \sum_x p(x)x$$

Useful to remember

$$\mu_{(X+Y)} = \mu_X + \mu_Y$$
$$\mu_{(a+bX)} = a + b\mu_x$$

Examples: One dice: 3.5 Two dices: 7 Ten dices: 35

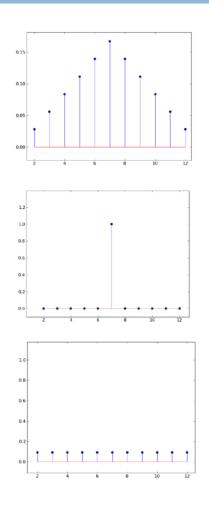


- $\Box P(even) = P(odd)*5/6$
- $\Box P(even) + P(odd) = 1$

More than mean

- Mean doesn't say everything
- Example
 - (1.3) The sum of the two dice, Z, i.e.
 p₇(2) = 1/36, ..., p₇(7) = 6/36 etc
 - **(3.2)** p_2 given by:
 - p₂(7)=1

- □ (3.3) p₃ given by:
 - $p_3(x) = 1/11$ for x = 2,3,...,12
- Have the same mean but are very different



Variance

The variance of a discrete random variable X

$$Var(X) = \sigma^2 = \sum_{x} p(x)(x - \mu)^2$$

Observe that

$$Var(X) = E((X - E(X))^2)$$

□ It may be shown that this equals $E(X^2) - (E(X))^2$

The standard deviation of the random variable

$$\sigma = \sqrt{Var(X)}$$

Examples of variance

□ Throwing one dice

•
$$\mu = (1+2+..+6)/6=7/2$$

• $\sigma^2 = ((1-7/2)^2 + (2-7/2)^2 + ...(6-7/2)^2)/6 = (25+9+1)/4*3=35/12$

- \Box (Ex 1.3) Throwing two dice: $\sigma^2 = 35/6$
- \square (Ex 3.2) p₂, where p₂(7)=1 has variance 0

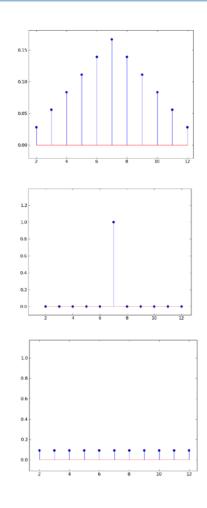
□ (Ex 3.3) p_3 , the uniform distribution, has variance: □ ((2-7)²+...(12-7)²)/11 = (25+16+9+4+1+0)*2/11 = 10

Probability distributions

Sannsynlighetsfordelinger

Examples of distributions

□ (3.2) p_2 given by: □ $p_2(7)=1$ □ $p_2(x)=0$ for $x \neq 7$



Bernoulli trial

One experiment, two outcomes

- □ Ω_x={0, 1}
- Write p for p(1)
- □ Then p(0) = 1-p

Examples:
Flipping a fair coin, p=1/2
Rolling a dice, getting a 6, p=1/6

□ The mean/expectation: 0*p(0)+1*p(1)=0+p=p□ Variance $Var(X) = \sigma^2 = \sum_{x} p(x)(x-\mu)^2 =$

Bernoulli trial

One experiment, two outcomes

- □ Ω_x={0, 1}
- Write p for p(1)
- □ Then p(0) = 1-p

Examples:
Flipping a fair coin, p=1/2
Rolling a dice, getting a 6, p=1/6

□ The mean/expectation: 0*p(0)+1*p(1)=0+p=p□ Variance $Var(X) = \sigma^2 = \sum_x p(x)(x-\mu)^2 = (1-p)(0-p)^2 + p(1-p)^2 = p(1-p)$

- Binomial distribution (binomisk fordeling)
- Conducting *n* Bernoulli trials with the same probability and counting the number of successes

Example flipping a fair coin n times, p(k):
n=2: p(0)=1/4, p(1)=1/2, p(2) =1/4
n=3: p(0)=1/8, p(1)=3/8, p(2)=3/8, p(3)=1/8
n=4: (1,4,6,4,1)/16
n=5: (1,5,10,5,1)/32

□ n:

$$p(k) = \binom{n}{k} \left(\frac{1}{2}\right)^n$$

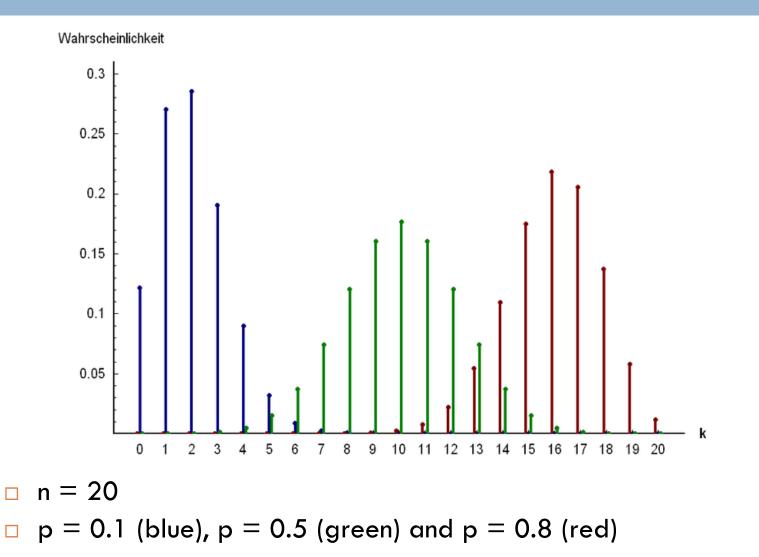
where

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- Binomial distribution (binomisk fordeling)
- General form:
 - □ 0<p<1
 - n a natural number

B(n,p) is given by
$$b(k;n,p) = \binom{n}{k} p^k (1-p)^{(n-k)}$$

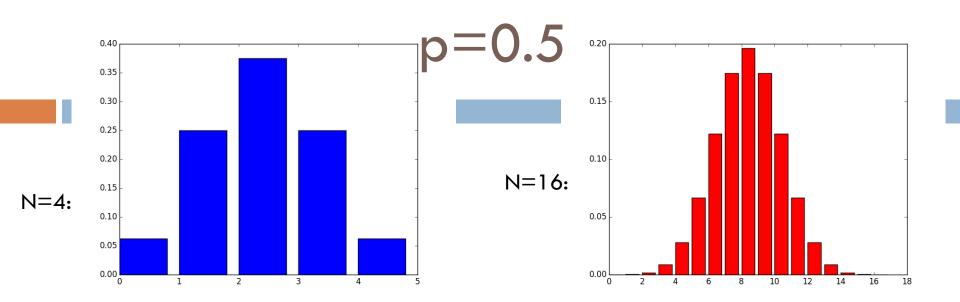
for k = 0, 1, ..., where
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$



□ Mean/expectation, μ , of B(n,p) is *np*

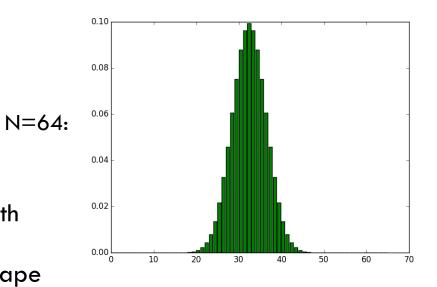
- n Bernoulli trials
- Each Bernoulli trial has mean p
- □ The variance is np(1-p)
 - Because the Bernoulli trials are independent
 - Each Bernoulli trial has variance p(1-p)

The variance of the sum of two <u>independent</u> random variables is the sum of their variances



Ν	1	4	16	64	256
σ^2	0.25	1	4	16	64
σ	0.5	1	2	4	8

- The relative variation gets smaller with growing N
- □ The pmf graph approaches a bell shape

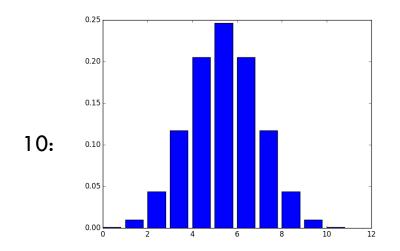


Think about

- Flip a coin 10 times, count the number of heads
- You expect 5 heads, but not exactly 5
 6 is OK
- When do you start to worry whether the coin is unfair?
 - 8 heads?
 - 9 heads?
- This is the task for inferential statistics

Tossing a fair(?) coin

 The cumulative distribution function:
 ``How likely is it to get N or fewer tails?''



Ν	pmf(N)	cdf(N)
0	0.001	0.001
1	0.010	0.011
2	0.044	0.055
3	0.117	0.172
4	0.205	0.377
5	0.246	0.623
6	0.205	0.828
7	0.117	0.945
8	0.044	0.989
9	0.010	0.999
10	0.001	1.000

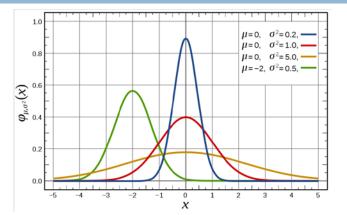
SciPy

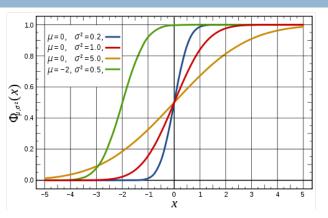
- import scipy
- □ from scipy import stats
- \square bin10 = stats.binom(10, 0.5) # N=10, p=0.5
- bin10.pmf(3) # probability mass of 3
- \square bin10.cdf(3) # cumulative distribution function at 3
- □ bin10.var() # variance
- bin10.std() # standard deviation

Continuous random variables

- \square P(X=a) = 0 for all values a
- The probability mass function does not make sense
- □ The cumulative distribution function, cdf, given by F(a) = P(X≤a) makes sense
- $\Box P(a \leq x \leq b) = F(b) F(a)$
- To calculate expectation and variance we must use integration instead of (infinite) sums.
 - We skip the details!

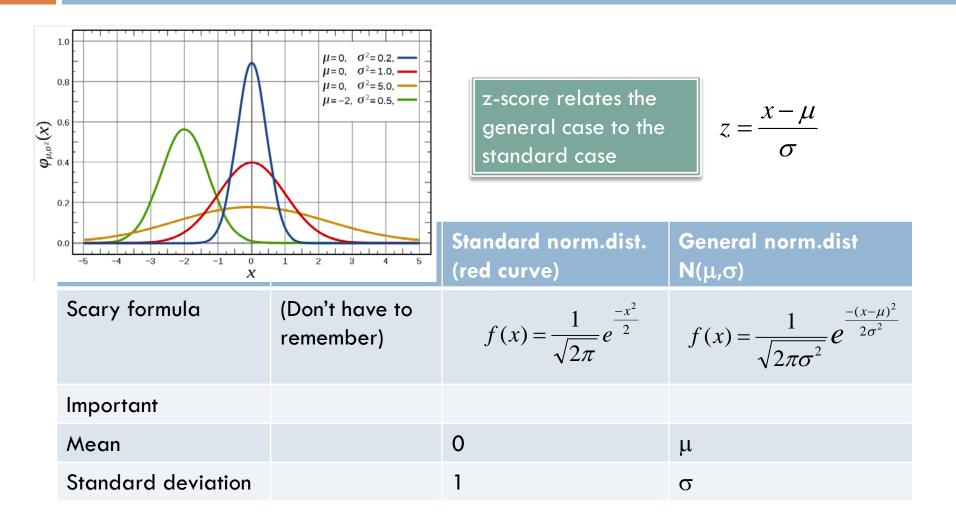
Probability density function



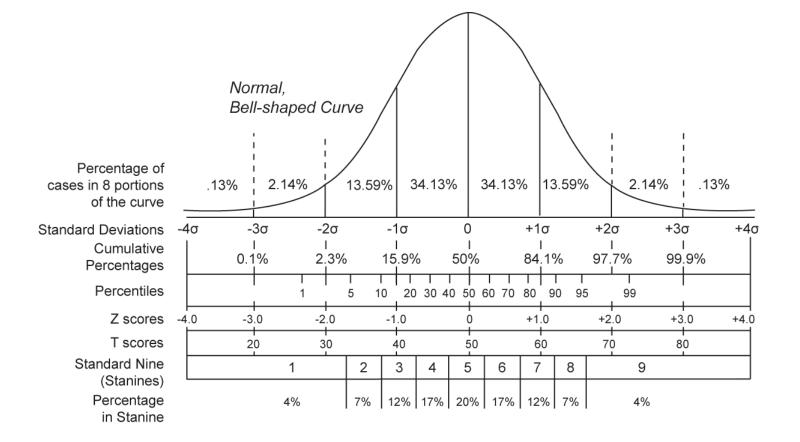


- The derivative of the cdf, F', is called the probability density function, pdf (sannsynlighetstetthet)
- We draw curves for pdf-s
- The pdf has a similar relationship to the cdf in the continuous case as the pma has in the discrete case

The normal distribution



68% - 95% - 99.7%



$$z = \frac{x - \mu}{\sigma}$$

Tallness of Norwegian young men (rough numbers):

- □ μ = 180 cm
- **□** σ = 6cm
- z = (186-180)/6=1
 (standard deviation)
- (100-68)/2%=
 16% are taller than 186cm

How many are taller than 190cm?

Prob. = 0.0475 (from table or software)

Sampling distribution

Utvalgsfordeling

Sampling - empirically

Goal:

- make assertions about a whole population
- from observations of a sample (utvalg)
- A simple random sample (SRS) (tilfeldig utvalg):
 - Each individual has equal chance of being chosen (unbiased/forventningsrett)
 - 2. Selection of the various individuals are independent
- □ Not as simple as it sounds (c.f. the current election polls):
 - Various methods to rescue
 - E.g. choose from known groups, weigh by group size (gender, age, home town, etc.)

Sampling in Language Technology

- You want to take a simple random sample of words from a corpus?
 - Can you use the *n* first sentences?
 - Can you use a random sample of n sentences?
- How can you build a corpus (sample) which gives a random sample of Norwegian texts?

Sampling distributions – Example

- Height: X
 - assume N(180, 6)
 - (Var=36)
- Randomly choose 100.
- Add their heights: $S = X_1 + X_2 + ... + X_n$
- A new random variable (all such samples)
 - □ $Exp(S) = n^*\mu = 18000$ (cm)
 - Var(S) = 100*Var(X) = 3600
 - $\sigma_S = 10 \times \sigma_X = 60 \ (cm)$

Source: Wikipedia

Sampling distributions – Example

- Height: X
 - assume N(180, 6)
 - (Var=36)
- Randomly choose 100.
- Add their heights: $S = X_1 + X_2 + ... + X_n$
- A new random variable (all such samples)
 - Exp(S) = $n^*\mu$ = 18000 (cm)
 - Var(S) = 100*Var(X) = 3600
 - $\sigma_S = 10 \times \sigma_X = 60 \ (cm)$

- The mean of the samples:
- $\Box \overline{X} = S/n$
- A new random variable
 (all such means of samples of 100)

•
$$Exp(S) = \mu = 180$$
 (cm)

$$\sigma_{\bar{X}} = \frac{1}{100} \times \sigma_S = 0.6 \ (cm)$$

Sampling distributions

Let X be a random variable for a population with exp: μ, std: σ Let S = X₁ + X₂+...+ X_n, i.e. each X_i equals X

• Let : $\overline{X} = S/n$

□ Then:

• Exp(S) =
$$n^*\mu$$

Var(S) =
$$\sigma_s^2 = n \times Var(X) = n \times \sigma_x^2$$

Var
$$(\overline{X}) = \sigma_{\overline{X}}^2 = \frac{1}{n^2} \times Var(S) = \frac{1}{n} \times \sigma_X^2$$

$$\sigma_{\overline{X}} = \frac{1}{\sqrt{n}} \times \sigma_{\overline{X}}$$

Effect of sample size

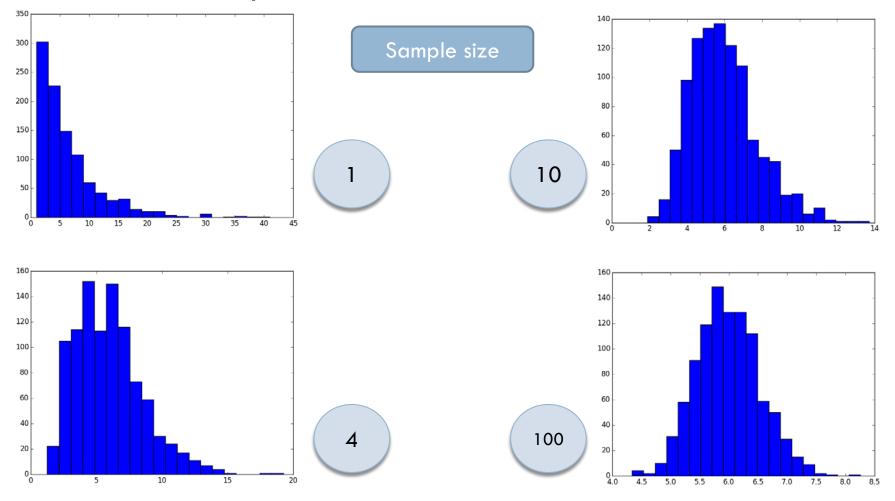
Sample size	1	4	16	100	400	1600
Standard dev.	6	3	1.5	0.6	0.3	0.15

The form of the distribution

- If the Xi-s are independent and normally distributed, then X is normally distributed (as expected)
- (More surprisingly) Even though the Xi-s are not normally distributed: for large n-s, the sample distribution is approximately normal
- = Central Limit Theorem

Example: throwing the dice until a 6

Number of samples: 1000



Binomial distribution $b(k;n,p) = \binom{n}{k} p^k (1-p)^{(n-k)}$

Population: all Bernoulli trials with probability p.

Sample: *n* such trials

Example: Throwing a dice *n* times, counting the number of 6-s (success)

- Number of successes: X
- Random variable over all series of n trials
- Binomial distribution (binomisk fordeling): B(n,p)
- □ E(X)= np
- $\Box \quad Var(X) = np(1-p)$

$$\sigma_X = \sqrt{np(1-p)}$$

□ Approximated by N(*np*, $\sqrt{np(1-p)}$) for large n

Rule of thumb: np>10 and n(1-p)>10 Proportion of success:
$$\hat{p} = X/n$$

 $E(\hat{p}) = E(X/n) = np/n = p$
 $Var(\hat{p}) = \sigma_X^2/n^2 =$
 $np(1-p)/n^2 = p(1-p)/n$

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \frac{\sigma_{Y}}{\sqrt{n}}$$

Approximated by N(p, $\sqrt{p(1-p)/n}$) for large n

Example

Example:
 p = 0.8

You have a classifier which you think is 80 % correct. What can you expect of this classifier from samples of various sizes?

Ν	E(X)	Var(X)	SD(X)	$\mu \pm 2\sigma$	E(p̂) =E(X/n)	Var(p̂)	SD(p)	$\mu \pm 2\sigma$
1	0.8	0.16	0.4		0.8	0.16	0.4	
25	20	4	2		0.8	0.0064	0.08	
100	80	16	4	[72, 88]	0.8	0.0016	0.04	[.72,.88]
2500	2000	400	20	[1960, 2040]	0.8	0.000064	0.008	
10000	8000	1600	40	[7920,8080]	0.8	0.000016	0.004	[.792,.808]