INF5830-2015 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning, Lecture 12, 2.11

Today

\square Feature selection 1 (Oblig 2)
\square Scikit-Learn from NLTK
\square Linear classifiers
\square Naive Bayes is log linear
\square Logistic Regression
\square Multinomial Logistic Regression $=$ Maximum Entropy Classifiers

Machine Learning

Selecting
Cleaning
Tokenization
Lemmatizing?
"Munging"

Feature
Selection
Arguably the
most important
step for the
results

Example: Word Sense Disambiguation

An electric guitar and bass player stand off to one side, not really part of the scene,
just as a sort of nod to gringo expectations perhaps.
"Bag of words"-features
\square Features: [fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band]
\square The example: $[0,0,0,1,0,0,0,0,0,0,1,0]$
\square Which words as features? How many?

- Many features
- Boolean values
\square NLTK, initially: The most frequent ones
\square There might be better ways to select (we return to this later)

Hard-line-serve

Number of word fectures	Hard		
0	0.802		
10	0.768		
20	0.764		
50	0.774		
100	0.800		
200	0.812		
500	0.830		
1000	0.842		
2000	0.846		
5000	0.844		

Hard-line-serve

Number of word features	Hard	Serve	
0	0.802	0.350	
10	0.768	0.550	
20	0.764	0.622	
50	0.774	0.692	
100	0.800	0.728	
200	0.812	0.766	
500	0.830	0.784	
1000	0.842	0.794	
2000	0.846	0.802	
5000	0.844	0.804	

Hard-line-serve

Number of word features	Hard	Serve	Line
0	0.802	0.350	0.528
10	0.768	0.550	0.528
20	0.764	0.622	0.534
50	0.774	0.692	0.576
100	0.800	0.728	0.688
200	0.812	0.766	0.706
500	0.830	0.784	0.744
1000	0.842	0.794	0.774
2000	0.846	0.802	0.802
5000	0.844	0.804	0.826

Collocational features

An electric guitar and bass player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.
\square With tags:
$\square\left[w_{i-2}, \mathrm{POS}_{i-2}, w_{i-1}, \mathrm{POS}_{i-1}, w_{i+1}, \mathrm{POS}_{i+1}, w_{i+2}, \mathrm{POS}_{i+2}\right]$
\square Example: [guitar, NN, and, CC, player, NN, stand, VB]
\square Without tags:
$\square\left[w_{i-2}, w_{i-1}, w_{i+1}, w_{i+2}\right]$

- Few features
- Many possible values
\square Example: [guitar, and, player, stand]

Window size (without tags)

Words on each side	Hard	Serve	Line
0	0.802	0.350	0.528
1	0.898	0.742	0.734
2	0.886	0.818	0.772
3	0.868	0.856	0.776
4	0.864	0.856	0.782
5	0.854	0.858	0.768

Both BoW and Colloc. features

Line.pos

 BOW features| 0 | 0.528 | 0.734 | 0.772 | 0.776 | 0.782 | 0.768 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 0.528 | 0.724 | 0.788 | 0.780 | 0.780 | 0.772 |
| 20 | 0.534 | 0.758 | 0.772 | 0.770 | 0.796 | 0.776 |
| 50 | 0.576 | 0.764 | 0.800 | 0.800 | 0.804 | 0.796 |
| 100 | 0.688 | 0.788 | 0.814 | 0.834 | 0.818 | 0.816 |
| 200 | 0.706 | 0.784 | 0.814 | 0.828 | 0.830 | 0.814 |
| 500 | 0.744 | 0.814 | 0.848 | 0.836 | 0.852 | 0.842 |
| 1000 | 0.774 | 0.836 | 0.860 | 0.864 | 0.854 | 0.848 |
| 2000 | 0.802 | 0.846 | 0.866 | 0.864 | 0.872 | 0.874 |
| 5000 | 0.826 | 0.872 | 0.886 | 0.886 | 0.894 | 0.890 |

Today

\square Feature selection 1 (Oblig 2)
\square Scikit-Learn from NLTK
\square Linear classifiers
\square Naive Bayes is log linear
\square Logistic Regression
\square Multinomial Logistic Regression = Maximum Entropy Classifiers

Other ML algorithms in NLTK

\square Included:
\square Naive Bayes (Bernoulli)
\square Decision trees
\square Import from Scikit-Learn
\square Example:

- from sklearn.linear_model import LogisticRegression

■ sk_classifier = SklearnClassifier(LogisticRegression())

- sk_classifier.train(train_set)
- Instead of:

■ classifier $=$ nltk.NaiveBayesClassifier.train(train_set)
\square Then use the same set-up as in the oblig

Scikit-Learn

\square A large set of various ML classification algorithms
\square They can be imported into NLTK
\square In general faster than NLTK's algorithms
\square Beware how the features are selected/formulated:
\square They may be reformulated/altered when translated into Scikit
\square Example:
\square SklearnClassifier(BernoulliNB()) performed inferior to nltk.NaiveBayesClassifier when we used the NLTK-features

Today

\square Feature selection 1 (Oblig 2)
\square Scikit-Learn from NLTK
\square Linear classifiers
\square Naive Bayes is log linear
\square Logistic Regression
\square Multinomial Logistic Regression $=$ Maximum Entropy Classifiers

Geometry: lines

\square Descartes

- (1596-1650)
\square Line:
$\square a x+b y+c=0$
\square If $b \neq 0$:
$\square y=m x+n$
$\square \mathrm{n}=-\mathrm{c} / \mathrm{b}$ is
the intercept with the y -
 axis
$\square m=-a / b$ is the slope
\square A point $=$ intersection of two lines

$$
\begin{aligned}
& y=-2 x+5 \\
& 4 x+2 y-10=0
\end{aligned}
$$

Normal vector of a line

$\square \cos (\pi / 2)=0$
\square If P passes through $(0,0)$ there is an $\mathbf{n}=$ $\left(x_{n}, y_{n}\right)$ s.t.
$\square(x, y)$ is on P iff
$\square(x, y) \bullet\left(x_{n}, y_{n}\right)=0$
$\square x \times x_{n}=-y \times y_{n}$
\square If $(a, b) \neq(0,0)$ is on P :
n $=s \times(b,-a)$ for some S

Vector $(2,5)$ is normal to the line $y=-2 x / 5$

Example:

$$
\begin{aligned}
& y=-2 x / 5 \\
& 2 x+5 y=0 \\
& (x, y) \bullet(2,5)=0
\end{aligned}
$$

Lines not through $(0,0)$

$\square y=-2 x+5$
$\square 2 x+y-5=0$
$\square(x, y) \bullet(2,1)=5$

Geometry: planes

\square Plane:
$\square a x+b y+c z+d=0$
\square If $c \neq 0$:
$\square \mathrm{z}=\mathrm{mx}+\mathrm{ny}+\mathrm{n}$
\square A line is the intersection of two planes

http://www.univie.ac.at/future.media/mo
e/galerie/geom2/geom2.html\#eb

Normal vector of a plane

\square All points (x, y, z) where
$\square\left((x, y, z)-\left(x_{0}, y_{0}, z_{0}\right)\right) \bullet(a, b, c)=0$
$\square(x, y, z) \bullet(a, b, c)=d$
$\square\left(d=a x_{0}+b y_{0}+c z_{0}\right)$
\square Hyperplane
$\square \mathrm{w}_{0}+\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}+\ldots+\mathrm{w}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}=0$
$\square\left(w_{1}, w_{2}, \ldots, w_{n}\right) \bullet\left(x_{1}, x_{2}, \ldots x_{n}\right)=-w_{0}$
\square Sometimes ($\mathrm{n}+1$ dimensions):
$\square\left(w_{0}, w_{1}, w_{2}, \ldots, w_{n}\right) \bullet\left(1, x_{1}, x_{2}, \ldots x_{n}\right)=0$

Hyperplanes

\square Generalizes to higher dimensions
$\square \ln n$-dimensional space ($x_{1}, x_{2}, \ldots, x_{n}$):

- Points satisfying:
$\square w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{n} x_{n}=0$
- for any choice of $w_{0}, w_{1}, w_{2}, \ldots w_{n}$
- where not all of $w_{1}, w_{2}, \ldots w_{n}=0$
\square is called a hyper-plane
\square (In machine learning) the same as the intersection of two hyper-planes in $n+1$ dimensional space:
$\square w_{0} x_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{n} x_{n}$
$\square \mathrm{x}_{0}=1$

Linear classifiers

\square Assume:

- All features are numerical (including Boolean)
- Two classes
\square The two classes are linearly separable if they can be separated by a hyperplane
\square In 2 dimensions that is a line:
$\square a x+b y<c$ for red points
$\square a x+b y>c$ for blue points

Linear classifiers

\square A linear classifier introduces a
hyperplane and
classifies accordingly
\square (If the data aren't linearly separable, the classifier will make mistakes).

Linear classifiers - general case

\square Try to separate the classes by a hyperplane

$$
\sum_{i=1}^{M} w_{i} x_{i}=\theta
$$

\square (equivalently $\vec{w} \bullet \vec{x}=\sum_{i=0}^{M} w_{i} x_{i}=0$

- taking $w_{0}=-\theta$ and $x_{0}=1$)
\square The object represented by
$\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
\square is in C if and only if $\sum_{i=1}^{M} w_{i} x_{i}>\theta$

\square and in -C if $\sum_{i=1}^{M} w_{i} x_{i}<\theta$

Today

\square Feature selection 1 (Oblig 2)
\square Scikit-Learn from NLTK
\square Linear classifiers
\square Naive Bayes is log linear
\square Logistic Regression
\square Multinomial Logistic Regression $=$ Maximum Entropy Classifiers

Naive Bayes is a log linear classifier

$$
\begin{aligned}
& \hat{C}=\underset{c \in\left\{c_{1}, c_{2}\right\}}{\arg } \max P(C) \prod_{j=1}^{n} P\left(f_{j} \mid C\right) \\
& P\left(C_{1}\right) \prod_{j=1}^{n} P\left(f_{j} \mid C_{1}\right)>P\left(C_{2}\right) \prod_{j=1}^{n} P\left(f_{j} \mid C_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{P\left(c_{1}\right) \prod_{j=1}^{n} P\left(f_{j} \mid c_{1}\right)}{P\left(c_{2}\right) \prod_{j=1}^{n} P\left(f_{j} \mid c_{2}\right)}>1 \\
& \frac{P\left(c_{1}\right)}{P\left(c_{2}\right)} \prod_{j=1}^{n} \frac{P\left(f_{j} \mid c_{1}\right)}{P\left(f_{j} \mid c_{2}\right)}>1
\end{aligned}
$$

$$
\begin{aligned}
& \log \left(\frac{P\left(c_{1}\right)}{P\left(c_{2}\right)} \prod_{j=1}^{n} \frac{P\left(f_{j} \mid c_{1}\right)}{P\left(f_{j} \mid c_{2}\right)}\right)>0 \\
& \log \left(\frac{P\left(c_{1}\right)}{P\left(c_{2}\right)}\right)+\sum_{j=1}^{n} \log \left(\frac{P\left(f_{j} \mid c_{1}\right)}{P\left(f_{j} \mid c_{2}\right)}\right)>0 \\
& \sum_{i=1}^{M} w_{i} x_{i}=\theta \quad w_{j}=\log \left(\frac{P\left(f_{j} \mid c_{1}\right)}{P\left(f_{j} \mid c_{2}\right)}\right) \\
& \theta=-w_{0}=-\log \left(\frac{P\left(c_{1}\right)}{P\left(c_{2}\right)}\right)
\end{aligned}
$$

A closer look: The Bernoulli model

$$
\log \left(\frac{P\left(c_{1}\right)}{P\left(c_{2}\right)}\right)+\sum_{j=1}^{n} \log \left(\frac{P\left(f_{j} \mid c_{1}\right)}{P\left(f_{j} \mid c_{2}\right)}\right)>0 \quad \sum_{i=1}^{M} w_{i} x_{i}=\theta \quad w_{j}=\log \left(\frac{P\left(f_{j} \mid c_{1}\right)}{P\left(f_{j} \mid c_{2}\right)}\right)
$$

\square A feature x_{i} equals 0 or 1 and corresponds to the combination of
\square what we earlier registered as a feature, and
\square the value of such a feature
Example 1 (gender of names, NLTK), where one feature registers the last letter of the name
\square Original view:
\square One (categorical) feature f1

- 26 possible different values: a, b, c, \ldots, z
- Current view:
- 26 different features $\times 1, \times 2, \ldots, \times 26$
- Each takes as value 0 or 1
- Exactly one equals 1 , the rest equals 0

A closer look: The Bernoulli model

$$
\log \left(\frac{P\left(c_{1}\right)}{P\left(c_{2}\right)}\right)+\sum_{j=1}^{n} \log \left(\frac{P\left(f_{j} \mid c_{1}\right)}{P\left(f_{j} \mid c_{2}\right)}\right)>0 \quad \sum_{i=1}^{M} w_{i} x_{i}=\theta \quad w_{j}=\log \left(\frac{P\left(f_{j} \mid c_{1}\right)}{P\left(f_{j} \mid c_{2}\right)}\right)
$$

\square A feature x_{i} equals 0 or 1 and corresponds to the combination of
\square what we earlier registered as a feature, and
\square the value of such a feature

Example 2: text categorization:

\square Original view: one feature f_{i} for a term t_{i} :
$\square f_{i}=1$ if t_{i} is present, $f_{i}=0$ if t_{i} isn't present
\square Current view
\square one term $x_{2 i}$ corresponding to t_{i} being present and one term $x_{2 i+1}$ corresponding to t_{i} being absent
\square One of these equals 1, the other equals 0

A closer look: the multinomial model

\square The multinomial does not strictly fit the NB-model:

$$
\log \left(\frac{P\left(c_{1}\right)}{P\left(c_{2}\right)}\right)+\sum_{j=1}^{n} \log \left(\frac{P\left(f_{j} \mid c_{1}\right)}{P\left(f_{j} \mid c_{2}\right)}\right)>0
$$

\square But it fits the linear model $\sum_{i=1}^{M} w_{j} x_{j}=\theta$

- If
$\square \mathrm{i}$ is the index of a feature term (lexeme) t_{i} (not a particular occurrence in a document)
$\square x_{i}$ is the number of occurrrences of t_{i} in the document
\square and w_{i} is

$$
w_{j}=\log \left(\frac{P\left(f_{j} \mid c_{1}\right)}{P\left(f_{j} \mid c_{2}\right)}\right)
$$

Today

\square Feature selection 1 (Oblig 2)
\square Scikit-Learn from NLTK
\square Linear classifiers
\square Naive Bayes is log linear
\square Logistic Regression
\square Multinomial Logistic Regression $=$ Maximum Entropy Classifiers

NB and logistic regression

\square The NB uses a linear expression to decide
$\log \left(\frac{P\left(c_{1} \mid \vec{f}\right)}{P\left(c_{2} \mid \vec{f}\right)}\right)=\log \left(\frac{P\left(c_{1} \mid \vec{f}\right)}{1-P\left(c_{1} \mid \vec{f}\right)}\right)=\vec{w} \bullet \vec{f}=\sum_{i=0}^{M} w_{i} x_{i}=w_{0} x_{0}+\sum_{i=1}^{M} w_{i} x_{i}>0$
\square where

$$
w_{j}=\log \left(\frac{P\left(f_{j} \mid c_{1}\right)}{P\left(f_{j} \mid c_{2}\right)}\right)
$$

\square Are these the best choices for the w_{i} ?
\square Logistic regression instead faces the question directly:
\square Which w_{i} s make the best classifier of the form
$\operatorname{logit}\left(P\left(c_{1} \mid \vec{f}\right)\right)=\ln \left(\frac{P\left(c_{1} \mid \vec{f}\right)}{1-P\left(c_{1} \mid \vec{f}\right)}\right)=\vec{w} \bullet \vec{f}=\sum_{i=0}^{M} w_{i} x_{i}=w_{0} x_{0}+\sum_{i=1}^{M} w_{i} x_{i}>0$

Logistic regression - learning

\square Conditional maximum likelihood estimation:
Choose the model that fits the training data best!

$$
\hat{w}=\underset{w}{\arg \max } \prod_{i=1}^{m} P\left(c^{i} \mid \vec{f}^{i}\right)=\underset{w}{\arg \max } \sum_{i=1}^{m} \log P\left(c^{i} \mid \vec{f}^{i}\right)
$$

\square where:
\square There are m many training data
$\square c^{i}$ is the class of observation i, i.e. c_{1} or c_{2}.
\square The feature vector for observation i is: $\vec{f}^{i}=\left(f_{1}^{i}, f_{2}^{i}, \ldots f_{n}^{i}\right)$

Furthermore

\square To estimate

$$
\hat{w}=\underset{w}{\arg \max } \prod_{i=1}^{m} P\left(c^{i} \mid \vec{f}^{i}\right)=\underset{w}{\arg \max } \sum_{i=1}^{m} \log P\left(c^{i} \mid \vec{f}^{i}\right)
$$

\square we must find the relationship between w and $P\left(c^{i} \mid f^{i}\right)$

$$
\begin{aligned}
& \ln \left(\frac{P\left(c_{1} \mid \vec{f}\right)}{1-P\left(c_{1} \mid \vec{f}\right)}\right)=\vec{w} \bullet \vec{f} \\
& \frac{P\left(c_{1} \mid \vec{f}\right)}{1-P\left(c_{1} \mid \vec{f}\right)}=e^{\bar{w} \bullet \vec{f}} \\
& P\left(c_{1} \mid \vec{f}\right)=\frac{e^{\bar{w} \bullet \vec{f}}}{1+e^{\bar{w} \bullet \vec{f}}} \\
& P\left(c_{1} \mid \vec{f}\right)=\frac{1}{1+e^{-\vec{w} \cdot \vec{f}}}
\end{aligned}
$$

Learning algorithms

\square There is no analytic solution to

$$
\hat{w}=\underset{w}{\arg \max } \sum_{i=1}^{m} \log P\left(c^{i} \mid \vec{f}^{i}\right) \quad \text { where } \quad P\left(c_{1} \mid \vec{f}\right)=\frac{1}{1+e^{-\vec{w} \bullet \vec{f}}}
$$

\square Use some numeric method which runs through a series of iterations
\square e.g. gradient ascent (hill climbing)

- There are partial derivatives (gradient) which points out the direction of the ascent
- There is a global optimum: convergence
- But we cannot predict how far to go.
\square There is a tendency to overfitting, hence regularization

$$
\hat{w}=\underset{w}{\arg \max } \sum_{i=1}^{m} \log P\left(c^{i} \mid \vec{f}^{i}\right)-\alpha R(w)
$$

\square Don't try this at home! Use a package

Gradient ascent

Today

\square Feature selection 1 (Oblig 2)
\square Scikit-Learn from NLTK
\square Linear classifiers
\square Naive Bayes is log linear
\square Logistic Regression
\square Multinomial Logistic Regression = Maximum Entropy Classifiers

A slight reformulation

\square We saw that for NB

$$
P\left(c_{1} \mid \vec{f}\right)>P\left(c_{2} \mid \vec{f}\right) \quad P\left(c_{1}\right) \prod_{j=1}^{n} P\left(f_{j} \mid c_{1}\right)>P\left(c_{2}\right) \prod_{j=1}^{n} P\left(f_{j} \mid c_{2}\right)
$$

\square iff

$$
\log \left(\frac{P\left(c_{1}\right)}{P\left(c_{2}\right)}\right)+\sum_{j=1}^{n} \log \left(\frac{P\left(f_{j} \mid c_{1}\right)}{P\left(f_{j} \mid c_{2}\right)}\right)>0
$$

\square This could also be written

$$
\left(\log P\left(c_{1}\right)-\log P\left(c_{2}\right)\right)+\sum_{j=1}^{n}\left(\log P\left(f_{j} \mid c_{1}\right)-\log P\left(f_{j} \mid c 2\right)\right)>0
$$

$$
\log P\left(c_{1}\right)+\sum_{j=1}^{n} \log P\left(f_{j} \mid c_{1}\right)>\log P\left(c_{2}\right)+\sum_{j=1}^{n} \log P\left(f_{j} \mid c 2\right)
$$

Reformualtion, contd.

$\square \quad \log P\left(c_{1}\right)+\sum_{j=1}^{n} \log P\left(f_{j} \mid c_{1}\right)>\log P\left(c_{2}\right)+\sum_{j=1}^{n} \log P\left(f_{j} \mid c 2\right)$
\square has the form

$$
\vec{w}^{1} \bullet \vec{f}=\sum_{i=0}^{M} w_{i}^{1} x_{i}>\sum_{i=0}^{M} w_{i}^{2} x_{i}=\vec{w}^{2} \bullet \vec{f}
$$

\square where

- $w_{j}^{1}=\log \left(P\left(f_{j} \mid c_{1}\right)\right)$
- $w_{j}^{2}=\log \left(P\left(f_{j} \mid c_{2}\right)\right)$
\square and our earlier $w_{j}=w_{j}^{1}-w_{j}^{2}$
\square So the probability in this notation

$$
P\left(c_{1} \mid \vec{f}\right)=\frac{e^{\overline{\bar{\omega}} \bullet \vec{f}}}{1+e^{\overline{\bar{\omega}} \bullet \vec{f}}}=\frac{e^{\left(\bar{w}^{1}-\bar{w}^{2}\right) \bullet \vec{f}}}{1+e^{\left(\bar{w}^{1}-\vec{w}^{2}\right) \bullet \vec{f}}}=\frac{e^{\overline{\bar{w}}^{1} \bullet \vec{f}}}{e^{\overline{\bar{w}}^{2} \bullet \vec{f}}+e^{\bar{w}^{1} \bullet \vec{f}}}
$$

\square and similarly for $\mathrm{P}\left(\mathrm{c}_{2} \mid \mathbf{f}\right)$

Multinomial logistic regression

\square We may generalize this to more than two classes
\square For each class c^{i} for $i=1, . ., k$

- a linear expression $\quad \vec{w}^{j} \bullet \vec{f}=\sum_{i=0}^{M} w_{i}^{j} x_{i}$
- and the probability of belonging to class c :

$$
P\left(c^{j} \mid \vec{f}\right)=\frac{1}{Z} \exp \left(\vec{w}^{j} \bullet \vec{f}\right)=\frac{1}{Z} e^{\bar{w}^{j} \cdot \vec{f}}=\frac{1}{Z} e^{\sum_{i} w_{i}^{j} f_{i}}=\frac{1}{Z} \prod_{i}\left(e^{w_{i}^{j}}\right)^{f_{i}}=\frac{1}{Z} \prod_{i} a_{i}^{f_{i}}
$$

- where $Z=\sum_{j=1}^{k} \exp \left(\vec{w}^{j} \bullet \vec{f}\right)$
and $a_{i}=e^{w_{i}}$

$$
\frac{\text { Multinomial regression }}{\text { Logistic regression }} \approx \frac{\text { Naive Bayes (Bernoulli) }}{\text { Binary NB as linear classifier }}
$$

Footnote: Alternative formulation

\square (In case you read other presentations, like Mitchell or Hastie et. al.:
\square They use a slightly different formulation, corresponding to
\square where for $i=1,2, \ldots, k-1$:
$P\left(c^{i} \mid \vec{f}\right)=\frac{1}{Z} \exp \left(\vec{w}^{i} \bullet \vec{f}\right)=\frac{1}{Z} e^{\vec{w}^{i} \bullet \vec{f}}=\frac{1}{Z} e^{\sum_{j} j_{j}^{i} f_{j}}=\frac{1}{Z} \prod_{j}\left(e^{W_{j}^{i}}\right)^{f_{j}}=\frac{1}{Z} \prod_{j} a_{j}^{f_{j}}$
But $Z=1+\sum_{i=1}^{k-1} \exp \left(\vec{w}^{i} \bullet \vec{f}\right)$ and $P\left(c^{k} \mid \vec{f}\right)=\frac{1}{1+\sum_{i=1}^{k-1} \exp \left(\vec{w}^{i} \bullet \vec{f}\right)}$
\square The two formulations are equivalent though:

- In the J\&M formulation, divide the numerator and denominator in each $P\left(c^{i} \mid f\right)$ with

$$
\exp \left(\vec{w}^{k} \bullet \vec{f}\right)
$$

- and you get this formulation (with adjustments to Z and \mathbf{w}.)

Indicator variables

$$
P\left(c^{j} \mid \vec{f}\right)=\frac{1}{Z} \exp \left(\bar{w}^{j} \bullet \vec{f}\right)=\frac{\exp \left(\vec{w}^{j} \bullet \vec{f}\right)}{\sum_{l=1}^{k} \exp \left(\bar{w}^{\prime} \bullet \vec{f}\right)}=\frac{\exp \left(\sum_{i=0}^{n} w_{i}^{j} f_{i}\right)}{\sum_{l=1}^{k} \exp \left(\sum_{i=0}^{n} w_{i}^{\prime} f_{i}\right)}=\frac{\exp \left(\sum_{i=1}^{m} w_{i} f_{i}\left(c^{j}, x\right)\right)}{\sum_{i=1}^{k} \exp \left(\sum_{i=0}^{m} w_{i} f_{i}\left(c^{\prime}, x\right)\right)}
$$

\square Already seen: categorical variables represented by indicator variables, taking the values 0,1
\square Also usual to let the variables indicate both observation and class

Examples - J\&M

We would like to know whether to assign the class $V B$ to race (or instead assign some other class like $N N$). One useful feature, we'll call it f_{1}, would be the fact that the current word is race. We can thus add a binary feature which is true if this is the case:

$$
f_{1}(c, x)= \begin{cases}1 & \text { if } \text { word }_{i}=" \text { race" } \& ~ c=\mathrm{NN} \\ 0 \text { otherwise }\end{cases}
$$

Another feature would be whether the previous word has the tag TO:

$$
f_{2}(c, x)= \begin{cases}1 & \text { if } t_{i-1}=\mathrm{TO} \& c=\mathrm{VB} \\ 0 & \text { otherwise }\end{cases}
$$

Two more part-of-speech tagging features might focus on aspects of a word's spelling and case:

$$
f_{3}(c, x)=\left\{\begin{array}{l}
1 \text { if suffix }\left(\text { word }_{i}\right)=\text { "ing" \& } c=\mathrm{VBG} \\
0 \text { otherwise }
\end{array}\right.
$$

Why called "maximum entropy"?

NN	JJ	NN	V	NN	IN	M	U	SYM	VB	P	PR	CC	CD	
$\frac{1}{45}$														

$P(N N)+P(N N S)=0.8$

NN	JJ	NNS	VB	NNP	\ldots
$\frac{4}{10}$	$\frac{1}{10}$	$\frac{4}{10}$	$\frac{1}{10}$	0	\ldots

$$
P(V B)=1 / 20
$$

NN	JJ	NNS	VB
$\frac{4}{10}$	$\frac{3}{20}$	$\frac{4}{10}$	$\frac{1}{20}$

See NLTK book for a further example

Why called "maximum entropy"?

\square The multinomial logistic regression yields the probability distribution which
\square Gives the maximum entropy
\square Given our training data

Learning

\square Similarly to the binary logistic regression,
\square Regularization

NLTK: Some iterative optimization techniques are much faster than others.

When training Maximum Entropy models, avoid the use of

- Generalized Iterative Scaling (GIS) or
\square Improved Iterative Scaling (IIS),
which are both considerably slower than the
\square Conjugate Gradient (CG) and
\square the BFGS optimization methods.

Line - Most frequen BoW-features

Number of word features	NaiveBayes	SklearnClassifi er(LogisticRegr ession())
0	0.528	0.528
10	0.528	0.528
20	0.534	0.546
50	0.576	0.624
100	0.688	0.732
200	0.706	0.752
500	0.744	0.804
1000	0.774	0.838
2000	0.802	0.846
5000	0.826	0.850

