Dependency Parsing

Lilja Øvrelid INF5830 Fall 2015

With thanks to Sandra Kübler and Joakim Nivre

Why?

- Increasing interest in dependency-based approaches to syntactic parsing in recent years
 - New methods emerging
 - Applied to a wide range of languages
 - CoNLL shared tasks (2006, 2007)

What?

- Computational methods for dependency-based parsing
 - Syntactic representations
 - Parsing algorithms
 - ► Machine learning
- ► Available resources for different languages
 - Parsers
 - ▶ Treebanks

Syntactic parsing

- automatically determining the syntactic structure for a given sentence
- Traditionally (for phrase-structure grammars):
 - search through all possible trees for a sentence
 - bottom-up vs top-down approaches

Ambiguities

- more than one possible structure for a sentence
- natural languages are hugely ambiguous
- a very common problem

	PoS-ambiguities					Attachment ambiguities
	VBZ	VBP	VBZ			
NNP	NNS	NN	NNS	CD	NN	
Fed	raises	interest	rates	0.5	%	in effort
						to control
						inflation

Back in the days (90s)

- Parsers assigned linguistically detailed syntactic structures (based on linguistic theories)
- Grammar-driven parsing: possible trees defined by the grammar
- ► Problems with coverage
 - only around 70% of all sentences were assigned an analysis
- Most sentences were assigned very many analyses by a grammar
 - no way of choosing between them

Enter data-driven (statistical) parsing

- ► Today data-driven/statistical parsing is available for a range of languages and syntactic frameworks
- Data-driven approaches: possible trees defined by the treebank (may also involve a grammar)
- Produce one analysis (hopefully the most likely one) for any sentence
- ▶ And get most of them correct
- ▶ Still an active field of research, improvements are still possible!

Statistics in parsing

- classical NLP parsing:
 - symbolic grammar and lexicon
 - proof systems to prove parses from words
- ambiguity problem is very large
 - minimal grammar on previous sentence: 36 parses
 - ▶ large broad-coverage grammar: millions of parses
- use probabilities to pick the most likely parse

Treebanks

- need data to estimate probabilities
- ► collection of sentences manually annotated with the correct parse ⇒ a treebank
- ▶ Penn Treebank: treebanks from Brown, Switchboard, ATIS og Wall Street Journal corpora
- Treebanks for other languages
 - Prague Dependency Treebank (czech)
 - Negra/Tuba-DZ (German)
 - ▶ Penn (Chinese)
 - Norwegian Dependency Treebank
 - the CoNLL treebanks (Project A)

Text parsing

- Goal: parse unrestricted text in natural language
 - ▶ Given a text $T = (x_1, ..., x_2)$ in language L, derive the correct analysis for every sentence $x_i \in T$.
- Challenges:
 - robustness: at least one analysis
 - disambiguation: at most one analysis
 - accuracy: correct analysis (for every sentence)
 - efficiency: reasonable time-and memory usage
- Two different methodological strategies
 - grammar-driven
 - data-driven

Grammar-driven parsing

- ► A formal grammar *G* defines
 - ▶ the language L(G) that can be parsed
 - the class of analyses returned by the parser
- robustness (analyze any input sentence)
 - ▶ some input sentences x_i are not in L(G)
 - constraint relaxation, partial parsing
- disambiguation
 - number of analyses assigned by grammar may be very large
 - probabilistic extensions, e.g. PCFG
- accuracy: assumed advantage, but requires joint optimization of robustness and disambiguation

Data-driven parsing

- 1. formal model M defining possible analyses for sentences in L
- 2. A sample of annotated text $S = (x_1, \dots, x_m)$ from L
- 3. An inductive inference scheme I defining actual analyses for the sentences of a text $T = (x_1, \ldots, x_n)$ in L, relative to M and S.
- ► *S* is the **training data**: contains representations satisfying *M*
- ▶ a treebank: manually annotated with correct analysis
- I based on supervised machine learning

Data-driven parsing

- ► robustness: depends on *M* and *I*, but usually designed such that any input string is assigned at least one analysis.
- disambiguation: severe problem, solved by inductive inference scheme
- improved accuracy represents main challenge
- efficiency: variation

Data-driven dependency parsing

- ► *M* defined by formal conditions on dependency graphs (labeled directed graphs that are):
 - connected
 - acyclic
 - single-head
 - (projective)
- ▶ I may be defined in different ways
 - parsing method (deterministic, non-deterministic)
 - machine learning algorithm, feature representations
- ► Two main approaches: graph-based and transition-based models [McDonald and Nivre 2007]

Graph-based approaches

- ▶ Basic idea:
 - define a space of candidate dependency graphs for a sentence
 - ► Learning: induce a model for scoring an entire dependency graph for a sentence
 - Parsing: Find the highest scoring dependency graph, given the induced model
- Characteristics:
 - global training
 - exhaustive search

Transition-based approaches

- Basic idea:
 - define a transition system for mapping a sentence to its dependency graph
 - ► Learning: induce a model for predicting the next state transition, given the transition history
 - Parsing: Construct the optimal transition sequence, given the induced model
- Characteristics:
 - ▶ local training
 - ▶ greedy search

MSTParser: Maximum Spanning Trees

[McDonald et al. 2005a, McDonald et al. 2005b]

- ► Score of a dependency tree = sum of scores of dependencies
- Scores are independent of other dependencies.
- Finding the highest scoring dependency tree = finding the maximum spanning tree (MST) in a graph containing all possible graphs
- Two cases:
 - ▶ Projective: Use Eisner's parsing algorithm.
 - Non-projective: Use Chu-Liu-Edmonds algorithm for finding the maximum spanning tree in a directed graph [Chu and Liu 1965, Edmonds 1967].
- ► Use machine learning for determining weight vector w: large-margin multi-class classification (MIRA)

MaltParser: transition-based dependency parsing

- ► MaltParser is a language-independent system for data-driven dependency parsing which is freely available
- ▶ It is based on a **deterministic** parsing strategy in combination with treebank-induced **classifiers** for predicting parsing actions
- MaltParser employs a rich feature history in order to guide parsing
- May easily be extended to take into account new features of the parse history

MaltParser

- Parsing as a set of transitions between parse configurations
- ▶ A parse configuration is a triple $\langle S, I, G \rangle$, where
 - ► *S* represents the parse stack a list of tokens which are candidates for dependency arcs
 - ▶ *I* is the queue of remaining input tokens
 - ▶ *G* represents the dependency graph under construction
- ► The parse *guide* predicts the next parse action (transition), based on the current parse configuration
- ► The guide is trained employing discriminative machine learning
- ► Recasts the learning problem as a classification problem: given a parse configuration, predict the next transition

Deterministic Parsing

- Basic idea:
 - Derive a single syntactic representation (dependency graph)
 through a deterministic sequence of elementary parsing actions
 - Sometimes combined with backtracking or repair
- Motivation:
 - Psycholinguistic modeling
 - Efficiency
 - Simplicity

Shift-Reduce Type Algorithms

- Data structures:
 - ▶ Stack $[..., w_i]_S$ of partially processed tokens
 - Queue $[w_i, \ldots]_Q$ of remaining input tokens
- Parsing actions built from atomic actions:
 - ▶ Adding arcs $(w_i \rightarrow w_j, w_i \leftarrow w_j)$
 - Stack and queue operations
- Restricted to projective dependency graphs

Nivre's Algorithm

► Four parsing actions:

Shift
$$\frac{[\ldots]s \quad [w_i,\ldots]_Q}{[\ldots,w_i]s \quad [\ldots]_Q}$$
Reduce
$$\frac{[\ldots,w_i]s \quad [\ldots]_Q \quad \exists w_k:w_k\to w_i}{[\ldots]s \quad [\ldots]_Q}$$
Left-Arc_r
$$\frac{[\ldots,w_i]s \quad [w_j,\ldots]_Q \quad \neg \exists w_k:w_k\to w_i}{[\ldots]s \quad [w_j,\ldots]_Q \quad w_i \stackrel{r}{\leftarrow} w_j}$$
Right-Arc_r
$$\frac{[\ldots,w_i]s \quad [w_j,\ldots]_Q \quad \neg \exists w_k:w_k\to w_j}{[\ldots,w_i,w_j]s \quad [\ldots]_Q \quad w_i \stackrel{r}{\rightarrow} w_j}$$

- Characteristics:
 - ► Integrated labeled dependency parsing
 - Arc-eager processing of right-dependents

 $[root]_S$ [Economic news had little effect on financial markets .] $_Q$

 $[{\color{red}\mathsf{root}} \ \, \mathsf{Economic}]_S \ \, [{\color{red}\mathsf{news}} \ \, \mathsf{had} \ \, \mathsf{little} \ \, \mathsf{effect} \ \, \mathsf{on} \ \, \mathsf{financial} \ \, \mathsf{markets} \ \, .]_Q$

Shift


```
[\text{root Economic news}]_S [had little effect on financial markets .]_Q
```


Right-Arcpred

Left-Arc_{nmod}

Right-Arcobj

Right-Arc_{nmod}

Shift

Left-Arc_{nmod}

Right-Arc_{pc}

Reduce

Reduce

Reduce

Reduce

Right-Arc

Classifier-Based Parsing

- ► Data-driven deterministic parsing:
 - Deterministic parsing requires an oracle.
 - ► An oracle can be approximated by a classifier.
 - ► A classifier can be trained using treebank data.
- ► Learning methods:
 - Support vector machines (SVM) [Kudo and Matsumoto 2002, Yamada and Matsumoto 2003, Isozaki et al. 2004, Cheng et al. 2004, Nivre et al. 2006]
 - Memory-based learning (MBL) [Nivre et al. 2004, Nivre and Scholz 2004]
 - Maximum entropy modeling (MaxEnt) [Cheng et al. 2005]

Feature Models

- Learning problem:
 - Approximate a function from parser configurations, represented by feature vectors to parser actions, given a training set of gold standard derivations.
- Typical features:
 - ▶ Tokens:
 - ► Target tokens
 - Linear context (neighbors in S and Q)
 - Structural context (parents, children, siblings in G)
 - Attributes:
 - Word form (and lemma)
 - ► Part-of-speech (and morpho-syntactic features)
 - Dependency type (if labeled)
 - ▶ Distance (between target tokens)

Feature Models

▶ Parse configurations are represented by a set of features, which focus on attributes of the top of the stack, the next input token and neighboring tokens in the stack, input queue and dependency graph

	form	pos	dep
S:top	+	+	+
l:next	+	+	
G:head of <i>top</i>	+		
G:leftmost dependent of top			+

Non-Projective Dependency Parsing

- Many parsing algorithms are restricted to projective dependency graphs.
- Is this a problem?
- Statistics from CoNLL-X Shared Task [Buchholz and Marsi 2006]
 - ► NPD = Non-projective dependencies
 - ► NPS = Non-projective sentences

Language	%NPD	%NPS
Dutch	5.4	36.4
German	2.3	27.8
Czech	1.9	23.2
Slovene	1.9	22.2
Portuguese	1.3	18.9
Danish	1.0	15.6

Two Main Approaches

- Algorithms for non-projective dependency parsing:
 - McDonald's spanning tree algorithm [McDonald et al. 2005b]
 - ► Covington's algorithm [Nivre 2006]
- Post-processing of projective dependency graphs:
 - Pseudo-projective parsing [Nivre and Nilsson 2005]

Non-Projective Parsing Algorithms

- ► Complexity considerations:
 - ► Projective (Proj)
 - ► Non-projective (NonP)

Problem/Algorithm	Proj	NonP
Deterministic parsing	<i>O</i> (<i>n</i>)	$O(n^2)$
[Nivre 2003, Covington 2001]		
First order spanning tree	$O(n^3)$	$O(n^2)$
[McDonald et al. 2005b]		

Post-Processing

- ► Two-step approach:
 - 1. Derive the best projective approximation of the correct (possibly) non-projective dependency graph.
 - 2. Improve the approximation by replacing projective arcs by (possibly) non-projective arcs.
- Rationale:
 - Most "naturally occurring" dependency graphs are primarily projective, with only a few non-projective arcs.

- Projectivize training data:
 - Projective head nearest permissible ancestor of real head
 - Arc label extended with dependency type of real head

AuxK

- Projectivize training data:
 - Projective head nearest permissible ancestor of real head
 - Arc label extended with dependency type of real head

AuxK

- Deprojectivize parser output:
 - ► Top-down, breadth-first search for real head
 - Search constrained by extended arc label

AuxK

- Deprojectivize parser output:
 - ► Top-down, breadth-first search for real head
 - Search constrained by extended arc label

AuxK

Pros and Cons of Dependency Parsing

- ▶ What are the advantages of dependency-based methods?
- ► What are the disadvantages?
- ► Four types of considerations:
 - Complexity
 - Transparency
 - Word order
 - Expressivity

Complexity

- Practical complexity:
 - Given the Single-Head constraint, parsing a sentence $x = w_1, \dots, w_n$ can be reduced to labeling each token w_i with:
 - ▶ a head word hi.
 - ▶ a dependency type d_i.
- Theoretical complexity:
 - By exploiting the special properties of dependency graphs, it is sometimes possible to improve worst-case complexity compared to constituency-based parsing

Transparency

▶ Direct encoding of predicate-argument structure

Transparency

- ▶ Direct encoding of predicate-argument structure
- ► Fragments directly interpretable

NP I NNS I books

Transparency

- ▶ Direct encoding of predicate-argument structure
- ► Fragments directly interpretable
- ▶ But only with labeled dependency graphs

NP I NNS I books

Word Order

- Dependency structure independent of word order
- ► Suitable for free word order languages (cf. German results)

Word Order

- Dependency structure independent of word order
- ► Suitable for free word order languages (cf. German results)

Word Order

- Dependency structure independent of word order
- Suitable for free word order languages (cf. German results)
- ▶ But only with non-projective dependency graphs

Expressivity

- Limited expressivity:
 - Every projective dependency grammar has a strongly equivalent context-free grammar, but not vice versa [Gaifman 1965].
 - ▶ Impossible to distinguish between phrase modification and head modification in unlabeled dependency structure [Mel'čuk 1988].

Practical Issues

- Where to get the software?
 - Dependency parsers
 - Conversion programs for constituent-based treebanks
- ▶ Where to get the data?
 - Dependency treebanks
 - Treebanks that can be converted into dependency representation
- ▶ How to evaluate dependency parsing?
 - Evaluation scores

Parsers

► Trainable parsers

Parsers

► Trainable parsers

► Concentrate on freely available parsers

Trainable Parsers

- Ryan McDonald's MSTParser
 - ► Based on the algorithms of [McDonald et al. 2005a, McDonald et al. 2005b]
 - ▶ URL: sourceforge.net/projects/mstparser
 - ▶ Written in JAVA

Trainable Parsers (2)

- Joakim Nivre's MaltParser
 - Inductive dependency parser with memory-based learning and SVMs
 - ▶ URL: http://maltparser.org
 - Executable versions are available for Solaris, Linux, Windows, and MacOS, open source
 - Written in JAVA

Trainable Parsers (3)

- Many others
 - ▶ Mate: https://code.google.com/p/mate-tools/
 - ► **Turbo**: http://www.cs.cmu.edu/~ark/TurboParser/
 - Spacy: http://spacy.io/

Treebanks

- Genuine dependency treebanks
- ► Treebanks for which conversions to dependencies exist

See also CoNLL-X Shared Task URL: http://nextens.uvt.nl/~conll/

Conversion strategy from constituents to dependencies

Dependency Treebanks

- ► Arabic: Prague Arabic Dependency Treebank
- ► Czech: Prague Dependency Treebank
- ▶ Danish: Danish Dependency Treebank
- Portuguese: Bosque: Floresta sintá(c)tica
- Slovene: Slovene Dependency Treebank
- ► Turkish: METU-Sabanci Turkish Treebank

Dependency Treebanks (2)

- ► Norwegian Dependency Treebank
 - Around 300 000 tokens of Bokmål and 300 000 tokens of Nynorsk, released in 2014
 - ► Freely downloadable (Språkbanken, Nasjonalbiblioteket)

Constituent Treebanks

- ► English: Penn Treebank
- Bulgarian: BulTreebank
- ▶ Chinese: Penn Chinese Treebank, Sinica Treebank
- Dutch: Alpino Treebank for Dutch
- ▶ German: TIGER/NEGRA, TüBa-D/Z
- ▶ Japanese: TüBa-J/S
- Spanish: Cast3LB
- Swedish: Talbanken05

Conversions to dependency structures exist for all of these

Conversion from Constituents to Dependencies

- ► Conversion from constituents to dependencies is possible
- ► Needs head/non-head information
- ▶ If no such information is given ⇒ heuristics
- Conversion for Penn Treebank to dependencies: e.g.,
 Magerman, Collins, Lin, Yamada and Matsumoto . . .
- ► Conversion restricted to structural conversion, no labeling
- ► Concentrate on Lin's conversion: [Lin 1995, Lin 1998]

Lin's Conversion

- ▶ Idea: Head of a phrase governs all sisters.
- Uses Tree Head Table: List of rules where to find the head of a constituent.
- ► An entry consists of the node, the direction of search, and the list of possible heads.

Lin's Conversion

- Idea: Head of a phrase governs all sisters.
- Uses Tree Head Table: List of rules where to find the head of a constituent.
- ► An entry consists of the node, the direction of search, and the list of possible heads.
- Sample entries:

```
(S right-to-left (Aux VP NP AP PP))
(VP left-to-right (V VP))
(NP right-to-left (Pron N NP))
```

► First line: The head of an S constituent is the first Aux daughter from the right; if there is no Aux, then the first VP, etc.

```
(S right-to-left (Aux VP NP AP PP))
(VP left-to-right (V VP))
(NP right-to-left (Pron N NP))
```

```
(S
      right-to-left (Aux VP NP AP PP))
(VP
     left-to-right (V VP))
      right-to-left (Pron N NP))
(NP
                                                  head
                                                         lex. head
                                           root
 NP<sub>1</sub>
PRON
        ADV
       really
               like
                      black
                              coffee
```

```
right-to-left (Aux VP NP AP PP))
(S
(VP
     left-to-right (V VP))
(NP
      right-to-left (Pron N NP))
                                                    head
                                                            lex. head
                                             root
 NP_1
                                                    \overline{\mathsf{VP}_1}
                                                            ??
PRON
         ADV
        really
                        AD.
                like
                       black
                                coffee
```

```
right-to-left (Aux VP NP AP PP))
(S
(VP
     left-to-right (V VP))
(NP
     right-to-left (Pron N NP))
                                               head
                                                     lex. head
                                         root
 NP_1
                                         VP₁
                                               VP_2
                                                     ??
PRON
        ADV
       really
              like
                     AD.
                    black
                             coffee
```

```
(S right-to-left (Aux VP NP AP PP))
(VP left-to-right (V VP))
(NP right-to-left (Pron N NP))
```


root	nead	lex. head
S	VP_1	like
VP_1	VP_2	like
VP_2	V	like

- ▶ The head of a phrase dominates all sisters.
- ▶ VP_1 governs $NP_1 \Rightarrow like$ governs I
- ▶ VP_2 governs $ADV \Rightarrow like$ governs really

- ▶ The head of a phrase dominates all sisters.
- ▶ VP_1 governs $NP_1 \Rightarrow like$ governs I
- ▶ VP_2 governs $ADV \Rightarrow like$ governs really

From Structural to Labeled Conversion

- ► Conversion so far gives only pure dependencies from head to dependent.
- Collins uses combination of constituent labels to label relation [Collins 1999]:
 - Idea: Combination of mother node and two subordinate nodes gives information about grammatical functions.
 - ▶ If $headword(Y_h) \rightarrow headword(Y_d)$ is derived from rule $X \rightarrow Y_1 \dots Y_n$, the relation is $\langle Y_d, X, Y_h \rangle$

Collins' Example

Collins' Example

Example with Grammatical Functions

Example with Grammatical Functions

Evaluation

- Internal evaluation: compare accuracy of model output to gold standard
- External evaluation (task-based evaluation):
 - quantify whether model output improves performance on a dependent task

Evaluation: data-driven dependency parsing

evaluation scores:

- Attachment score percentage of words that have the correct head (and label)
- ► Labeled and unlabeled
- ► For single dependency types (labels):
 - Precision
 - ► Recall
 - ▶ F measure

Part I: Data-driven dependency parsing

- ► Dependency grammar (last Monday)
- ► Dependency parsing (today)
- ► Project A released today
- Experimental methodology (Thursday)
- Project A (written report due Oct. 23rd):
 - training and evaluation of parsers for several languages
 - CoNLL-X (2006, 2007)
 - MaltParser: freely available software for data-driven dependency parsing

- Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X shared task on multilingual dependency parsing. In Proceedings of the Tenth Conference on Computational Natural Language Learning.
- Yuchang Cheng, Masayuki Asahara, and Yuji Matsumoto. 2004.
 Determinstic dependency structure analyzer for Chinese. In Proceedings of the First International Joint Conference on Natural Language Processing (IJCNLP), pages 500–508.
- Yuchang Cheng, Masayuki Asahara, and Yuji Matsumoto. 2005.
 Machine learning-based dependency analyzer for Chinese. In Proceedings of International Conference on Chinese Computing (ICCC), pages ?—?
- Y. J. Chu and T. J. Liu. 1965.
 On the shortest arborescence of a directed graph. Science Sinica, 14:1396–1400.
- Michael Collins. 1999.
 Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis,
 University of Pennsylvania.
- Michael A. Covington. 2001.
 A fundamental algorithm for dependency parsing. In *Proceedings of the 39th Annual ACM Southeast Conference*, pages 95–102.
- J. Edmonds, 1967.

- Optimum branchings. Journal of Research of the National Bureau of Standards, 71B:233–240.
- Haim Gaifman. 1965.
 Dependency systems and phrase-structure systems. *Information and Control*, 8:304–337.
- Hideki Isozaki, Hideto Kazawa, and Tsutomu Hirao. 2004.
 A deterministic word dependency analyzer enhanced with preference learning. In Proceedings of the 20th International Conference on Computational Linguistics (COLING), pages 275–281.
- Taku Kudo and Yuji Matsumoto. 2002.
 Japanese dependency analysis using cascaded chunking. In Proceedings of the Sixth Workshop on Computational Language Learning (CoNLL), pages 63–69.
- Dekang Lin. 1995.
 A dependency-based method for evaluating broad-coverage parsers. In *Proceedings* of *IJCAI-95*, pages 1420–1425.
- Dekang Lin. 1998.
 A dependency-based method for evaluating broad-coverage parsers. *Natural Language Engineering*, 4:97–114.
- Ryan McDonald and Joakim Nivre. 2007.

- Characterizing the errors of data-driven dependency parsing models. In *Proceedings* of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning.
- Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005a. Online large-margin training of dependency parsers. In *Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL)*, pages 91–98.
- Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. 2005b. Non-projective dependency parsing using spanning tree algorithms. In Proceedings of the Human Language Technology Conference and the Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP), pages 523–530.
- Igor Mel'čuk. 1988.
 Dependency Syntax: Theory and Practice. State University of New York Press.
- Joakim Nivre and Jens Nilsson. 2005.
 Pseudo-projective dependency parsing. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL), pages 99–106.
- Joakim Nivre and Mario Scholz. 2004.
 Deterministic dependency parsing of English text. In Proceedings of the 20th International Conference on Computational Linguistics (COLING), pages 64–70.
- Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.

Memory-based dependency parsing. In Hwee Tou Ng and Ellen Riloff, editors, *Proceedings of the 8th Conference on Computational Natural Language Learning (CoNLL)*, pages 49–56.

- Joakim Nivre, Johan Hall, Jens Nilsson, Gülsen Eryiğit, and Svetoslav Marinov. 2006. Labeled pseudo-projective dependency parsing with support vector machines. In Proceedings of the Tenth Conference on Computational Natural Language Learning (CoNLL).
- ▶ Joakim Nivre. 2003.
 An efficient algorithm for projective dependency parsing. In Gertjan Van Noord, editor, *Proceedings of the 8th International Workshop on Parsing Technologies (IWPT)*, pages 149–160.
- Joakim Nivre. 2006. Constraints on non-projective dependency graphs. In Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics (EACL), pages 73–80.
- Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical dependency analysis with support vector machines. In Gertjan Van Noord, editor, Proceedings of the 8th International Workshop on Parsing Technologies (IWPT), pages 195–206.