
Dependency Parsing

Lilja Øvrelid
INF5830
Fall 2015

With thanks to Sandra Kübler and Joakim Nivre
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Introduction

Why?

◮ Increasing interest in dependency-based approaches to
syntactic parsing in recent years

◮ New methods emerging
◮ Applied to a wide range of languages
◮ CoNLL shared tasks (2006, 2007)

Dependency Parsing 2(55)



Introduction

What?

◮ Computational methods for dependency-based parsing
◮ Syntactic representations
◮ Parsing algorithms
◮ Machine learning

◮ Available resources for different languages
◮ Parsers
◮ Treebanks
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Syntactic parsing

Syntactic parsing

◮ automatically determining the syntactic structure for a given
sentence

◮ Traditionally (for phrase-structure grammars):
◮ search through all possible trees for a sentence
◮ bottom-up vs top-down approaches
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Syntactic parsing

Ambiguities

◮ more than one possible structure for a sentence

◮ natural languages are hugely ambiguous

◮ a very common problem

PoS-ambiguities Attachment ambiguities
VB

VBZ VBP VBZ
NNP NNS NN NNS CD NN
Fed raises interest rates 0.5 % in effort

to control
inflation
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Syntactic parsing

Back in the days (90s)

◮ Parsers assigned linguistically detailed syntactic structures
(based on linguistic theories)

◮ Grammar-driven parsing: possible trees defined by the
grammar

◮ Problems with coverage
◮ only around 70% of all sentences were assigned an analysis

◮ Most sentences were assigned very many analyses by a
grammar

◮ no way of choosing between them
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Syntactic parsing

Enter data-driven (statistical) parsing

◮ Today data-driven/statistical parsing is available for a range of
languages and syntactic frameworks

◮ Data-driven approaches: possible trees defined by the
treebank (may also involve a grammar)

◮ Produce one analysis (hopefully the most likely one) for any
sentence

◮ And get most of them correct

◮ Still an active field of research, improvements are still possible!
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Syntactic parsing

Statistics in parsing

◮ classical NLP parsing:
◮ symbolic grammar and lexicon
◮ proof systems to prove parses from words

◮ ambiguity problem is very large
◮ minimal grammar on previous sentence: 36 parses
◮ large broad-coverage grammar: millions of parses

◮ use probabilities to pick the most likely parse
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Syntactic parsing

Treebanks

◮ need data to estimate probabilities

◮ collection of sentences manually annotated with the correct
parse ⇒ a treebank

◮ Penn Treebank: treebanks from Brown, Switchboard, ATIS og
Wall Street Journal corpora

◮ Treebanks for other languages
◮ Prague Dependency Treebank (czech)
◮ Negra/Tuba-DZ (German)
◮ Penn (Chinese)
◮ Norwegian Dependency Treebank
◮ the CoNLL treebanks (Project A)
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Text parsing

Text parsing

◮ Goal: parse unrestricted text in natural language
◮ Given a text T = (x1, . . . , x2) in language L, derive the correct

analysis for every sentence xi ∈ T .

◮ Challenges:
◮ robustness: at least one analysis
◮ disambiguation: at most one analysis
◮ accuracy: correct analysis (for every sentence)
◮ efficiency: reasonable time-and memory usage

◮ Two different methodological strategies
◮ grammar-driven
◮ data-driven
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Text parsing

Grammar-driven parsing

◮ A formal grammar G defines
◮ the language L(G) that can be parsed
◮ the class of analyses returned by the parser

◮ robustness (analyze any input sentence)
◮ some input sentences xi are not in L(G)
◮ constraint relaxation, partial parsing

◮ disambiguation
◮ number of analyses assigned by grammar may be very large
◮ probabilistic extensions, e.g. PCFG

◮ accuracy: assumed advantage, but requires joint optimization
of robustness and disambiguation
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Text parsing

Data-driven parsing

1. formal model M defining possible analyses for sentences in L

2. A sample of annotated text S = (x1, . . . , xm) from L

3. An inductive inference scheme I defining actual analyses for
the sentences of a text T = (x1, . . . , xn) in L, relative to M

and S .

◮ S is the training data: contains representations satisfying M

◮ a treebank: manually annotated with correct analysis

◮ I based on supervised machine learning
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Text parsing

Data-driven parsing

◮ robustness: depends on M and I , but usually designed such
that any input string is assigned at least one analysis.

◮ disambiguation: severe problem, solved by inductive inference
scheme

◮ improved accuracy represents main challenge

◮ efficiency: variation
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Data-driven dependency parsing

Data-driven dependency parsing

◮ M defined by formal conditions on dependency graphs
(labeled directed graphs that are):

◮ connected
◮ acyclic
◮ single-head
◮ (projective)

◮ I may be defined in different ways
◮ parsing method (deterministic, non-deterministic)
◮ machine learning algorithm, feature representations

◮ Two main approaches: graph-based and transition-based
models [McDonald and Nivre 2007]
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Data-driven dependency parsing

Graph-based approaches

◮ Basic idea:
◮ define a space of candidate dependency graphs for a sentence
◮ Learning: induce a model for scoring an entire dependency

graph for a sentence
◮ Parsing: Find the highest scoring dependency graph, given the

induced model

◮ Characteristics:
◮ global training
◮ exhaustive search
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Data-driven dependency parsing

Transition-based approaches

◮ Basic idea:
◮ define a transition system for mapping a sentence to its

dependency graph
◮ Learning: induce a model for predicting the next state

transition, given the transition history
◮ Parsing: Construct the optimal transition sequence, given the

induced model

◮ Characteristics:
◮ local training
◮ greedy search
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Data-driven dependency parsing

MSTParser: Maximum Spanning Trees

[McDonald et al. 2005a, McDonald et al. 2005b]

◮ Score of a dependency tree = sum of scores of dependencies

◮ Scores are independent of other dependencies.

◮ Finding the highest scoring dependency tree = finding the
maximum spanning tree (MST) in a graph containing all
possible graphs

◮ Two cases:
◮ Projective: Use Eisner’s parsing algorithm.
◮ Non-projective: Use Chu-Liu-Edmonds algorithm for finding

the maximum spanning tree in a directed graph
[Chu and Liu 1965, Edmonds 1967].

◮ Use machine learning for determining weight vector w:
large-margin multi-class classification (MIRA)
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Data-driven dependency parsing

MaltParser: transition-based dependency

parsing

◮ MaltParser is a language-independent system for data-driven
dependency parsing which is freely available

◮ It is based on a deterministic parsing strategy in combination
with treebank-induced classifiers for predicting parsing actions

◮ MaltParser employs a rich feature history in order to guide
parsing

◮ May easily be extended to take into account new features of
the parse history
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MaltParser

MaltParser

◮ Parsing as a set of transitions between parse configurations

◮ A parse configuration is a triple 〈S , I ,G 〉, where
◮ S represents the parse stack – a list of tokens which are

candidates for dependency arcs
◮ I is the queue of remaining input tokens
◮ G represents the dependency graph under construction

◮ The parse guide predicts the next parse action (transition),
based on the current parse configuration

◮ The guide is trained employing discriminative machine learning

◮ Recasts the learning problem as a classification problem: given
a parse configuration, predict the next transition
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MaltParser

Deterministic Parsing

◮ Basic idea:
◮ Derive a single syntactic representation (dependency graph)

through a deterministic sequence of elementary parsing actions
◮ Sometimes combined with backtracking or repair

◮ Motivation:
◮ Psycholinguistic modeling
◮ Efficiency
◮ Simplicity
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MaltParser

Shift-Reduce Type Algorithms

◮ Data structures:
◮ Stack [. . . ,wi ]S of partially processed tokens
◮ Queue [wj , . . .]Q of remaining input tokens

◮ Parsing actions built from atomic actions:
◮ Adding arcs (wi → wj , wi ← wj)
◮ Stack and queue operations

◮ Restricted to projective dependency graphs
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MaltParser

Nivre’s Algorithm

◮ Four parsing actions:

Shift
[. . .]S [wi , . . .]Q

[. . . ,wi ]S [. . .]Q

Reduce
[. . . ,wi ]S [. . .]Q ∃wk : wk → wi

[. . .]S [. . .]Q

Left-Arcr
[. . . ,wi ]S [wj , . . .]Q ¬∃wk : wk → wi

[. . .]S [wj , . . .]Q wi
r
← wj

Right-Arcr
[. . . ,wi ]S [wj , . . .]Q ¬∃wk : wk → wj

[. . . ,wi ,wj ]S [. . .]Q wi
r
→ wj

◮ Characteristics:
◮ Integrated labeled dependency parsing
◮ Arc-eager processing of right-dependents

Dependency Parsing 22(55)



MaltParser

Example

[root]S [Economic]S [news]S [had]S [little]S [effect]S [on]S [financial]S [mark

obj

p

pred

sbjnmod nmod nmod

pc

nmod

Shift Left-Arcnmod Shift Left-Arcsbj Right-Arcpred Shift Left-Arcnmod

Right-Arcobj Right-Arcnmod Shift Left-Arcnmod Right-Arcpc Reduce
Reduce Reduce Reduce Right-Arcp
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MaltParser

Classifier-Based Parsing

◮ Data-driven deterministic parsing:
◮ Deterministic parsing requires an oracle.
◮ An oracle can be approximated by a classifier.
◮ A classifier can be trained using treebank data.

◮ Learning methods:
◮ Support vector machines (SVM)

[Kudo and Matsumoto 2002, Yamada and Matsumoto 2003,

Isozaki et al. 2004, Cheng et al. 2004, Nivre et al. 2006]
◮ Memory-based learning (MBL)

[Nivre et al. 2004, Nivre and Scholz 2004]
◮ Maximum entropy modeling (MaxEnt)

[Cheng et al. 2005]
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MaltParser

Feature Models

◮ Learning problem:
◮ Approximate a function from parser configurations, represented

by feature vectors to parser actions, given a training set of gold
standard derivations.

◮ Typical features:
◮ Tokens:

◮ Target tokens
◮ Linear context (neighbors in S and Q)
◮ Structural context (parents, children, siblings in G)

◮ Attributes:
◮ Word form (and lemma)
◮ Part-of-speech (and morpho-syntactic features)
◮ Dependency type (if labeled)
◮ Distance (between target tokens)
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MaltParser

Feature Models

◮ Parse configurations are represented by a set of features,
which focus on attributes of the top of the stack, the next

input token and neighboring tokens in the stack, input queue
and dependency graph

form pos dep

S:top + + +
I:next + +
G:head of top +
G:leftmost dependent of top +
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MaltParser

Non-Projective Dependency Parsing

◮ Many parsing algorithms are restricted to projective
dependency graphs.

◮ Is this a problem?
◮ Statistics from CoNLL-X Shared Task [Buchholz and Marsi 2006]

◮ NPD = Non-projective dependencies
◮ NPS = Non-projective sentences

Language %NPD %NPS

Dutch 5.4 36.4
German 2.3 27.8
Czech 1.9 23.2
Slovene 1.9 22.2
Portuguese 1.3 18.9
Danish 1.0 15.6
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MaltParser

Two Main Approaches

◮ Algorithms for non-projective dependency parsing:
◮ McDonald’s spanning tree algorithm [McDonald et al. 2005b]
◮ Covington’s algorithm [Nivre 2006]

◮ Post-processing of projective dependency graphs:
◮ Pseudo-projective parsing [Nivre and Nilsson 2005]
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MaltParser

Non-Projective Parsing Algorithms

◮ Complexity considerations:
◮ Projective (Proj)
◮ Non-projective (NonP)

Problem/Algorithm Proj NonP

Deterministic parsing O(n) O(n2)
[Nivre 2003, Covington 2001]

First order spanning tree O(n3) O(n2)
[McDonald et al. 2005b]
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MaltParser

Post-Processing

◮ Two-step approach:

1. Derive the best projective approximation of the correct
(possibly) non-projective dependency graph.

2. Improve the approximation by replacing projective arcs by
(possibly) non-projective arcs.

◮ Rationale:
◮ Most“naturally occurring”dependency graphs are primarily

projective, with only a few non-projective arcs.
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MaltParser

Pseudo-Projective Parsing

◮ Projectivize training data:
◮ Projective head nearest permissible ancestor of real head
◮ Arc label extended with dependency type of real head

root Z nich je jen jedna na kvalitu .

(out-of) (them) (is) (only) (one) (to) (quality)

Pred

AuxK

Atr

AuxP

Sb

AuxZ

AuxPAuxP

AuxP↑SbAuxP↑Sb

Adv
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Pros and Cons of Dependency Parsing

Pros and Cons of Dependency Parsing

◮ What are the advantages of dependency-based methods?

◮ What are the disadvantages?

◮ Four types of considerations:
◮ Complexity
◮ Transparency
◮ Word order
◮ Expressivity
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Pros and Cons of Dependency Parsing

Complexity

◮ Practical complexity:
◮ Given the Single-Head constraint, parsing a sentence

x = w1, . . . ,wn can be reduced to labeling each token wi with:
◮ a head word hi ,
◮ a dependency type di .

◮ Theoretical complexity:
◮ By exploiting the special properties of dependency graphs, it is

sometimes possible to improve worst-case complexity compared
to constituency-based parsing
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Pros and Cons of Dependency Parsing

Transparency

◮ Direct encoding of predicate-argument structure

◮ Fragments directly interpretable

◮ But only with labeled dependency graphs

She writes books

sbj obj

S

VP

NP NP

PRP VBZ NNS

She writes books
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Pros and Cons of Dependency Parsing

Word Order

◮ Dependency structure independent of word order

◮ Suitable for free word order languages (cf. German results)

◮ But only with non-projective dependency graphs

hon har sett honom

(she) (has) (seen) (him)

sbj vg objsbj

vg

obj S

VP VP

NP NP

PRP VB VBN PRP

hon har sett honom

(she) (has) (seen) (him)
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Pros and Cons of Dependency Parsing

Expressivity

◮ Limited expressivity:
◮ Every projective dependency grammar has a strongly equivalent

context-free grammar, but not vice versa [Gaifman 1965].
◮ Impossible to distinguish between phrase modification and head

modification in unlabeled dependency structure [Mel’čuk 1988].

sbj verb obj adverbial V, VP or S modification?
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Practical Issues

Practical Issues

◮ Where to get the software?
◮ Dependency parsers
◮ Conversion programs for constituent-based treebanks

◮ Where to get the data?
◮ Dependency treebanks
◮ Treebanks that can be converted into dependency

representation

◮ How to evaluate dependency parsing?
◮ Evaluation scores
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Practical Issues

Parsers

◮ Trainable parsers

◮ Concentrate on freely available parsers
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Practical Issues

Trainable Parsers

◮ Ryan McDonald’s MSTParser
◮ Based on the algorithms of

[McDonald et al. 2005a, McDonald et al. 2005b]
◮ URL: sourceforge.net/projects/mstparser
◮ Written in JAVA
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Practical Issues

Trainable Parsers (2)

◮ Joakim Nivre’s MaltParser
◮ Inductive dependency parser with memory-based learning and

SVMs
◮ URL: http://maltparser.org
◮ Executable versions are available for Solaris, Linux, Windows,

and MacOS, open source
◮ Written in JAVA
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Practical Issues

Trainable Parsers (3)

◮ Many others
◮ Mate: https://code.google.com/p/mate-tools/
◮ Turbo: http://www.cs.cmu.edu/~ark/TurboParser/
◮ Spacy: http://spacy.io/
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Practical Issues

Treebanks

◮ Genuine dependency treebanks

◮ Treebanks for which conversions to dependencies exist

◮ See also CoNLL-X Shared Task
URL: http://nextens.uvt.nl/~conll/

◮ Conversion strategy from constituents to dependencies

Dependency Parsing 42(55)

https://code.google.com/p/mate-tools/
http://www.cs.cmu.edu/~ark/TurboParser/
http://spacy.io/
http://nextens.uvt.nl/~conll/


Practical Issues

Dependency Treebanks

◮ Arabic: Prague Arabic Dependency Treebank

◮ Czech: Prague Dependency Treebank

◮ Danish: Danish Dependency Treebank

◮ Portuguese: Bosque: Floresta sintá(c)tica

◮ Slovene: Slovene Dependency Treebank

◮ Turkish: METU-Sabanci Turkish Treebank
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Practical Issues

Dependency Treebanks (2)

◮ Norwegian Dependency Treebank
◮ Around 300 000 tokens of Bokmål and 300 000 tokens of

Nynorsk, released in 2014
◮ Freely downloadable (Spr̊akbanken, Nasjonalbiblioteket)
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Practical Issues

Constituent Treebanks

◮ English: Penn Treebank

◮ Bulgarian: BulTreebank

◮ Chinese: Penn Chinese Treebank, Sinica Treebank

◮ Dutch: Alpino Treebank for Dutch

◮ German: TIGER/NEGRA, TüBa-D/Z

◮ Japanese: TüBa-J/S

◮ Spanish: Cast3LB

◮ Swedish: Talbanken05

Conversions to dependency structures exist for all of these
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Practical Issues

Conversion from Constituents to

Dependencies

◮ Conversion from constituents to dependencies is possible

◮ Needs head/non-head information

◮ If no such information is given ⇒ heuristics

◮ Conversion for Penn Treebank to dependencies: e.g.,
Magerman, Collins, Lin, Yamada and Matsumoto . . .

◮ Conversion restricted to structural conversion, no labeling

◮ Concentrate on Lin’s conversion: [Lin 1995, Lin 1998]
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Practical Issues

Lin’s Conversion

◮ Idea: Head of a phrase governs all sisters.

◮ Uses Tree Head Table: List of rules where to find the head
of a constituent.

◮ An entry consists of the node, the direction of search, and the
list of possible heads.

◮ Sample entries:
(S right-to-left (Aux VP NP AP PP))
(VP left-to-right (V VP))
(NP right-to-left (Pron N NP))

◮ First line: The head of an S constituent is the first Aux
daughter from the right; if there is no Aux, then the first VP,
etc.
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Practical Issues

Lin’s Conversion - Example
(S right-to-left (Aux VP NP AP PP))
(VP left-to-right (V VP))
(NP right-to-left (Pron N NP))

S

NP1

PRON

I

VP1

ADV

really

VP2

V

like

NP2

ADJ

black

N

coffee

root head lex. head
S VP1 ??
VP1 VP2 ??
S VP1 like

VP1 VP2 like

VP2 V like
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Practical Issues

Lin’s Conversion - Example (2)

◮ The head of a phrase dominates all sisters.

◮ VP1 governs NP1 ⇒ like governs I

◮ VP2 governs ADV ⇒ like governs really

like

I really coffee

black
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Practical Issues

From Structural to Labeled Conversion

◮ Conversion so far gives only pure dependencies from head to
dependent.

◮ Collins uses combination of constituent labels to label relation
[Collins 1999]:

◮ Idea: Combination of mother node and two subordinate nodes
gives information about grammatical functions.

◮ If headword(Yh)→ headword(Yd) is derived from rule
X → Y1 . . .Yn, the relation is <Yd ,X ,Yh>
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Practical Issues

Collins’ Example
S

NP

NNS

workers

VP

VBD

dumped

NP

NNS

sacks

PP

IN

into

NP

DT

a

NN

bin

Dependency Relation

dumped → workers <NP, S, VP>
dumped → root <S, START, START>
dumped → sacks <NP, VP, VBD>
dumped → into <PP, VP, VBD>
into → bin <NP, PP, IN>
bin → a <DT, NP, NN>
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Practical Issues

Example with Grammatical Functions

S

NP

subj

NNS

hd

workers

VP

hd

VBD

hd

dumped

NP

obj

NNS

hd

sacks

PP

v-mod

IN

hd

into

NP

nhd

DT

nhd

a

NN

hd

bin

Dependency Relation

dumped → workers sbj
dumped → root punct
dumped → sacks obj
dumped → into v-mod
into → bin nhd
bin → a nhd
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Practical Issues

Evaluation

◮ Internal evaluation: compare accuracy of model output to
gold standard

◮ External evaluation (task-based evaluation):
◮ quantify whether model output improves performance on a

dependent task
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Practical Issues

Evaluation: data-driven dependency parsing

evaluation scores:

◮ Attachment score percentage of words that have the correct
head (and label)

◮ Labeled and unlabeled

◮ For single dependency types (labels):
◮ Precision
◮ Recall
◮ F measure
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Practical Issues

Part I: Data-driven dependency parsing

◮ Dependency grammar (last Monday)

◮ Dependency parsing (today)

◮ Project A released today

◮ Experimental methodology (Thursday)

◮ Project A (written report due Oct. 23rd):
◮ training and evaluation of parsers for several languages
◮ CoNLL-X (2006, 2007)
◮ MaltParser: freely available software for data-driven

dependency parsing
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